AN ANALYSIS OF THE AUTOMOBILE MARKET: MODELING THE LONG-RUN DETERMINANTS OF THE DEMAND FOR AUTOMOBILES

Volume I - The Wharton EFA Automobile Demand Model

George R. Schink Colin J. Loxley<br>WHARTON EFA, INC. One University City 4025 Chestnut Street Philadelphia PA 19104



DECEMBER 1979
FINAL REPORT

DOCUMENT IS AVAILABLETO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD. VIRGINIA 22161

> DEPARTMENT OF TRANSPORTATION

$$
\text { MAR , } 1980
$$

LIBRARY

```
Prepared for
U.S, DEPARTMENT OF TRANSPORTATION

\section*{NOTICE}

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

\section*{NOTICE}

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

16. Abstrost

An econometric model is developed which provides long-run policy analysis and forecasting of annual trends, for U.S. auto stock, new sales, and their composition by auto size-class. The concept of "desired" (equilibrium) stock is introduced. "Desired stock" and its composition by size-class are related to numerous economic and demographic variables using cross-section data. Among them is a new "capitalized cost per mile" measure, which expresses all costs over time relative to miles driven, discounted back to the present. New registrations, total and by class, and scrappage are found to be strongly related to "desired" stock relative to actual stock, with other influences operating as "speed of adjustment" factors. Fuel efficiency is analyzed in detail, relating mpg by class to physical vehicle characteristics and technological developments. Purchase prices and options expenditures are analyzed and all cost measures distinguished by foreign vs domestic origin as well as by size-class. Volume I summarizes and describes the study, and contains a forecast through 2000. Volume II contains extensive simulation analysis, with public policy implications. Volume III contains data and methodology fappendices.

DEPAATMENT OF TAANSFOFTAT! ON
U.S. Department of Transportation Research and Special Programs Administration Cambridqe MA 02142
\begin{tabular}{|l} 
\\
\hline 17. Koy Words Automobiles, Long-Run
\end{tabular}

Forecasting, U.S. Demand, Annual Stock, New Sales, Scrappage, Fuel Efficiency, Auto Costs.
-
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
19. Security Clossif. (of this report) \\
Unclassified
\end{tabular} & \begin{tabular}{r} 
20. S. \\
\hline
\end{tabular}
\end{tabular}
18. Distribution Statemant

Document is-available to the public through the National Technical
Information Service, Springfield, Virginia 22161

A research undertaking of this magnitude required the concerted efforts of many people, each of whose contributions were essential to its successful completion. The entire project was overseen by the project director, George R. Schink, who also conceived the overall structure of the model. James Savitt helped develop the approach employed, and assisted in the initial data gathering effort and equation estimation. Arthur Doud supervised the work of preparing data bases and computer systems, as well as having the main responsibilty for the international modeling effort. The exogenous projections for the model's forecasts were primarily developed by Sonia Klein. The final report was written and revised by Colin Loxley, who also was responsible for the forecast and simulation analysis. The prinicpal research assistant throughout was Brenda McCowan. Most of the typing for the final report was performed by Renee Scott. Finally, the authors wish to acknowledge the help of the TSC personnel Ron Mauri and Bob Mellman, whose critical reviews undoubtedly improved the final report. This report was originated under the Transportation Energy Efficiency Program (TEEP) at the Transportation Systems Center (TSC), under the sponsorship of the U.S. Department of Transportation, Office of the Secretary (DOT/OST). Work was completed under sponsorship of the U.S. Department of Transportation, National Highway Traffic Safety Administration (DOT/NHTSA).
SHOLJVA NOISHJANOJ JIHLJW




THE WHARTON E.F.A. AUTOMOBILE DEMAND MODEL

\section*{TABLE OF CONTENTS}
CHAPTER ..... PAGE
1 EXECUTIVE SUMMARY
1.1 Project Objective ..... 1-1
1.2 Summary of Approach and Modeling Contributions ..... 1-1
1.3 Key Aspects of the Wharton E.F.A. Automobile Demand Model ..... 1-5
1.3.1 The Determinants of Desired Stock Per Family ..... 1-5
1.3.2 The Determinants of New Registrations ..... 1-6
1.3.3 The Determinants of Scrappage ..... 1-7
1.3.4 The Determinants of Desired Shares by Size-Class ..... 1-8
1.3.5 The Determinants of Sales Shares by Class ..... 1-9
1.3.6 Model Interactions ..... 1-9
1.4 Outlook and Analysis ..... 1-10
1.4.1 Assumptions ..... 1-10
1.4.2 Baseline Forecast ..... 1-11
1.4.3 Sensitivity Analysis ..... 1-12
1.5 Concluding Remarks ..... 1-15

\section*{TABLE OF CONTENTS \\ (continued)}

CHAPTER
PAGE

INTRODUCTION
DESCRIPTION OF THE WEFA AUTO DEMAND MODEL
3.1 Objectives3-1
3.2 Model Overview ..... 3-2
3.2.1 Introduction ..... 3-2
3.2.2 Cross-Sectional Analysis - The Desired Stock ..... 3-3
3.2.2 Decision Makers - The Family Unit ..... 3-4
3.2.4 Stock - Share Approach ..... 3-5
3.2.5 Size Class Definitions ..... 3-8
3.2.6 Structural Relationships ..... 3-10
3.2.7 The Cost Per Mile Concept ..... 3-13
3.3 Model Structure ..... 3-16
3.3.1 Outline ..... 3-16
3.3.2 Desired Stock ..... 3-18
3.3.3 Translation to Time Series ..... 3-22
3.3.4 New Registrations and Scrappage ..... 3-24
3.3.5 Vehicle Miles Traveled ..... 3-28
3.3.6 Miles Per Gallon ..... 3-29
3.3.7 New Car Prices ..... 3-30
3.3.8 Used Car Prices ..... 3-31
3.4 Model Inputs and Outputs ..... 3-32
3.5 Summary of Model Structure ..... 3-35
Tables
3-1 Desired Stock and Share Equations ..... 3-37
3-2 Estimated Desired Shares by Class ..... 3-42 Over Time
3-3 Estimated Desired Auto Stock ..... 3-43
Over Time
3-4 Total New Registrations and Scrappage ..... 3-44
3-5 Share of New Registrations Equations ..... 3-46
3-6 Description of WEFA Long-Run Auto ..... 3-48 Demand Model Outputs
3-7 Description of WEFA Long-Run Auto ..... 3-49 Demand Model Inputs
Charts
3A Simplified Schematic of The WEFA 3-51
Auto Model
3B Detail of The Long Run Auto Model ..... 3-52
3C Input and Output Detail of The Long Run ..... 3-53 Auto Model
4 BASELINE FORECASTS AND ELASTICITIES
4.1 Assumptions Through 2000 ..... 4-1
4.1.1 Demographic Trends ..... 4-1
4.1.2 Baseline Economic Outlook ..... 4-3
4.1.3 Automobile Characteristics ..... 4-7
4.2 Baseline Forecast Results ..... 4-10
4.3 Model Elasticities ..... 4-14
Tables of Forecast Output
Baseline Auto Model Forecast ..... 4-24

\subsection*{1.1 PROJECT OBJECTIVE}

The primary objective of this research project was to construct a longrun econometric model of the U.S. auto market which can be used to forecast the long-run size and composition of U.S. auto demand and stock. Within the context of this project, the model will be used to generate long-run forecasts in order to study the impacts of altered assumptions concerning such factors as the efficiency and weight of new cars, gasoline prices, and auto-mobile-related tax laws. The model will be made available to the TSC research staff for their use in ongoing forecasting and policy analysis work. To accomplish this latter objective, appropriate data files and computer simulation programs will be supplied on a computer system designated by the TSC staff.

\subsection*{1.2 SUMMARY OF APPROACH AND MODELING CONTRIBUTIONS}

The observed cyclical fluctuations in auto market activity cannot provide an accurate guide to long-run trends. Meaningful analysis extending to the year 2000 therefore clearly requires consideration of the demographic, economic, technological, and behavioral determinants of the long-run equilibrium underlying the observed market behavior.

The critical, innovative, approach employed in the Wharton Automobile Demand Model is therefore the analysis of the "desired" auto stock and its "desired" composition by size-class. This approach was implemented using cross-sectional state data for 1972. This methodology permits the estimated
equations to be interpreted as long-run, equilibrium relationships.
With the "desired" levels established the "realized"values - new registrations and scrappage - are determined by the "gap" between the desired and actual stocks. Similarly, the shares by size-class of new registrations are expressed as functions of the divergence between the desired and actual shares of stock. Hence, the mechanism linking the "desired" block to the "actual" block is a stock-adjustment process, the parameters of which were estimated from time-series data.

As is appropriate in a long-term model, the size and composition of the desired stock are strongly influenced by demographic factors. Noteable features here are our use of family-size variables in the size-class relationships, and the definition of the basic scale variable as the number of family units (rather than "households", which adds together people unlikely to jointly own a car).

A second major influence is, of course, income. However, in addition to a real income per family variable, we have refined the concept of saturation by introducing an income distribution measure, which acts to slow the demand response to increasing real incomes. Income distribution also plays a role in the size-class distribution. A further factor that we have introduced is a "trading-up" response. This is achieved by means of a variable expressing income relative to average automobile costs.

The third important element is the cost of purchasing and operating an automobile. Here we have originated a new, and we believe superior, overall measure of costs which is termed "capitalized cost per mile". This attempts to account for all costs and expenditures involved in automobile ownership,
taking note of when they are incurred, and expresses the costs relative to the stream of services yielded by the auto - the miles traveled. Finally, both the time-stream of expenditures and services are discounted back to the present to reflect the lesser significance of more distant costs and benefits.

Another influence on desired stock comes from public transit usage. Although the measure used here is far from ideal, it nonetheless does represent the marginal substitution of public transportation facilities for the private automobile.

Passing from the "desired" relationships to actual or "realized" values, equations were estimated from annual time-series data relating new car sales and used car scrappage to the desired total stock, the existing stock, and current economic cyclical conditions and price movements. The age of the stock and the intensity of its use also affect scrappage. Both sales and scrappage are disaggregated by size-class and by foreign versus domestic origin.

While the user may supply his own price and fuel efficiency assumptions if desired, the model does incorporate a fully developed set of relationships for determining the components of total purchase prices, and for estimating miles per gallon by class as functions of vehicle characteristics.

Finally, subsidiary features of the model are an analysis of the used car market, concerned with total transactions and prices by vintage and by class, and a prediction of total vehicle miles traveled by the fleet of automobiles.

The primary outputs and capabilities of the Wharton Automobile Demand Model may be summarized as follows:

The model yields forecasts of -
The size and composition by size-class of the 'desired' (equilibrium) stock of autos.

New registrations, total, and by size-class.
The size, composition by size-class, and vintage distribution of scrappage.

The size, composition by class. and vintage distribution of the actual auto stock.

Vehicle miles traveled by the fleet.
Miles per gallon by size-class, and for the new and existing fleet, both EPA estimates and actual driving m.p.g. estimates.

New car base purchase prices, options expenditures, and transportation charges by size-class.

Used car prices, by size-class and by vintage, and total used car transactions.

The model can be used to analyze the impacts of -
Changes in the rate of family formation, the distribution of families by size, the age and geographic distribution of the population.

Varying rates of real income growth, employment, and inflation.
Possible tax and pricing policies affecting either purchase costs or operating expenses, such as the price of gasoline.

Changing curb weights and engine displacements, and increases in fuel consumption efficiency through technological advances or losses due to stricter emissions standards.
1.3 KEY ASPECTS OF THE WHARTON EFA AUTOMOBILE DEMAND MODEL

Each model relationship constitutes a simplified representation of behavior for a particular element of automobile demand. Just as each element does not stand alone in the "real world" neither do the model relationships. They interact extensively with each other, frequently simultaneously, such that the precise, overall impact of a given change in a causal factor cannot always be readily determined with reference to its impact on a particular element of the system.

Notwithstanding this fact, the simplest course for purposes of exposition - to catch the "flavor" of the relationships - is to take each element in turn, and describe the nature and role of the principal influences upon them. This is the purpose of this section with respect to the most important "core" elements of the model. We also discuss the general trends currently projected for each. Finally, the section concludes with an outline of how the elements interact with each other.

\subsection*{1.3.1 THE DETERMINANTS OF DESIRED STOCK PER FAMILY}

Key behavioral aspects of the long-run stock of autos per family unit are:
--As real income per family increases, the desired stock of autos per family increases.
--The rate of increase in the stock slows substantially as the percentage of families earning in excess of \(\$ 15,000\) per year (in constant dollars) increases. This represents the "market saturation" factor with respect to income.
--As the number of licensed drivers per family increases, the desired number of autos per family increases. This could be termed a demographic market saturation factor.
--As the cost per vehicle mile driven increases, the desired stock of autos per family declines.
--Increased availability of mass transit leads to a reduction in the desired stock of autos.

Over the next 25 years, real income per family may well grow at a somewhat slower rate than in the past, while the percentage earning over \(\$ 15,000\) is expected to continue to rise. At the same almost \(90 \%\) of the 16 to 74 age group now have licenses, which (given current demographic projections) suggests that the growth in licensed drivers, total and per family, will be markedly slower from 1980 onwards.

These three factors would, by themselves, tend to imply a declining rate of growth in autos per family. The outlook for real costs per mile and mass transit is more uncertain, but in the absence of dramatic technological changes a rise in the former may perhaps be considered probable, while the latter has recently reversed its historical decline in ridership. The anticipated trends in all five influences would therefore seem to imply a possible marked slowdown in the growth of the desired stock of autos.

The current outlook is for a modest increase in desired stock per family unit from 1.25 units per family in 1975 to 1.33 units by the year 2000. In fact, desired stock per family is anticipated to reach saturation by the late 1980's, remaining virtually unchanged thereafter.

Total desired stock is expected to show healthy growth through 1980 (2.7\% per annum), primarily due to a recovery in real family income and a high rate of family formation. Then the rate of growth will slow to \(1.8 \%\) per annum through 1985, reaching 117 million units in that year, and thereafter desired stock parallels the growth in family units, increasing at a rate of less than \(1 \%\) per annum, reaching 134 million units by 2000.

\subsection*{1.3.2 THE DETERMINANTS OF NEW REGISTRATIONS}

Variations in new car sales are largely seen as a response to fluctuations in desired stock - they are the main component in the process of adjustment to

Tong-run equilibrum stock. Significant findings include:
--A change in desired stock initially leads to much sharper changes in new sales.
--Cyclical swings in income produce sharp swings in auto sales.
--Sharp increases in new car prices tend to lead to postponement of new car purchases.
--Increases in the rate of scrappage lead (indirectly) to increases in new car sales.

The key finding is the strength of the new car sales adjustment to changes in the desired stock. A substantial slowdown in the rate of growth of the desired auto stock will produce an even more marked slowdown in the growth of auto sales. The timing and magnitude of this change are only strongly affected by the direct impacts of income, prices, and scrappage in the shortrun.

As a consequence of the forecast for desired stock, we therefore anticipate a favorable outlook for new registrations through 1981, followed by a long period of stagnation during the 1980's, and a modest revival from the late 1980's through the end of the period. From about 10 million units in 1976, sales should peak at over \(12 \frac{1}{2}\) million units in 1981, and approach 14 million units by the year 2000.

\subsection*{1.3.3 THE DETERMINANTS OF SCRAPPAGE}

Scrappage tends to be a cyclical phenomemon, rising in good times and falling in bad times. Key factors affecting scrappage are as follows:
--If the desired stock falls relative to the actual stock, the rate of scrappage increases.
--As the average age of the stock rises, the scrappage rate rises.
--As miles driven per auto increases, the scrappage rate increases.
--An increase in new car sales would lead (indirectly) to an increase in total scrappage.
--As the price of older cars declines relative to the price of steel scrap, the rate of scrappage increases.

Total scrappage undergoes wide fluctuations from year to year but over the longer term the many influences tend to be self-correcting. If scrappage falls, the stock's age tends to rise, pushing scrappage back up. Since scrappage is so strongly related to the desired stock, the actual stock, and new registrations, the relationship is highly simultaneous. "In equilibrium", scrappage and new sales tend to equality. The current scrappage outlook is for sharp increases from the depressed 1975 level and, in the longer run, scrappage then tends towards the level of new registrations.

\subsection*{1.3.4 THE DETERMINANTS OF DESIRED SHARES BY SIZE-CLASS}

The dominant behavioral characteristics of the desired share relationships are:
--As the cost per mile for a given size increases relative to the average cost per mile for all other classes, that car's desired share in the stock declines.
--As the average size of a family declines, the demand for full-size cars falls relative to total demand.
--Rising incomes (relative to auto costs) implies trading-up to larger, more expensive, cars.
--As the average age of the population rises, the share of smaller cars in desired stock falls
--As the percentage of families earning in excess of \(\$ 15,000\) increases, the shares of luxury, and small cars (second and third cars), increase.

While the desired shares in the fleet are highly sensitive to relative purchase and operating costs, these (in the absence of special taxes designed to alter the desired composition of the fleet) may not change very radically over the next 15 years, with the notable exception of the impacts of changes in fuel efficiencies and higher gasoline prices. However, if the current slow popula-
tion growth is maintained, the average size of families can be expected to decrease, tending to imply a smaller share for full-size cars than economic trends alone would indicate. At the same time, the population aged 20 to 29 years will fall, relatively, exerting a similar downward influence on the small-car shares.

\subsection*{1.3.5 THE DETERMINANTS OF SALES SHARES BY CLASS}

The share of new car sales responds solely (in the context of the WEFA model) to changes in the desired fleet composition. A given shift in desired composition of the fleet initially produces much larger shifts in the composition of new car sales, in exactly the same type of response as that of total sales to changes in the total desired stock.

Given the assumptions that have been made about downsizing, our forecast suggests that the swing back to full-size cars that we have seen occurring in 1976 is not a temporary phenomemon, but may be expected to persist, and even gather momentum. In the absence of sharp cost increases or large fuel efficiency losses due to much more stringent pollution and safety standards, we anticipate that a smaller, more efficient, full-size car might account for a peak market share as high as \(30 \%\) by the mid - 1980's with the subcompact-compact share falling below 40\%, compared to \(17 \%\) and \(51 \%\), respectively, for 1975 .

\subsection*{1.3.6 MODEL INTERACTIONS}

The above sections have sketched out the separate parts of the model. Let us turn now to how these fit together. The WEFA Auto Demand Model is a long-run equilibrium model. If all forces acting on the auto market were held constant, the model would tend towards an equilibrium state with actual stock constant and equal to desired stock, total registrations and scrappage con-
stant and equal, and the class-shares of stock, new registrations, and scrappage, also constant and equal.

Now let the desired stock rise. This would (directly) occur due to a rise in income, a fall in auto operating or purchase costs, more licensed drivers per family, increasing urbanization or a decline in non-auto modes of commuting. New registrations would then increase sharply, and the scrappage rate would tend to fall. Thereafter, new registrations and total scrappage would oscillate more and more gradually about their new (higher) equilibrium levels.

Should a change occur which alters the composition of the desired stock, such as changes in auto costs, income and its distribution, family size, geographic shifts in population, or changes in age structure, then the new registrations and scrappage shares of the classes would shift. Again, the initial response would be proportionately greater than the initiating desired share changes.

Here the pattern is more complex because total desired stock also changes. Suppose a shift towards smaller (cheaper) cars occurs, then the average cost per mile of the desired stock is reduced, tending to increase desired stock, and initiating the pattern of aggregate responses already outlined.

\subsection*{1.4 OUTLOOK AND ANALYSIS}

In this section the assumptions and results for our baseline projection are outlined, and the findings for some variations in these assumptions are presented in the form of an analysis of elasticities.

\subsection*{1.4.1 ASSUMPTIONS}

The basic assumptions fall into three groups: demographic, economic, and auto characteristics:

The major demographic assumptions are:
Slow population growth: the growth-rate falls from \(0.7 \%\) per annum for 1976-1985 to just over 0.3\% per annum for 1995-2000.

Family formation outpaces population: the number of family units rises from 75.3 million in 1975 to 87.4 mil ion in 1985 (a \(1.5 \%\) per annum rate) to 100.7 million by 2000 (a \(0.9 \%\) per annum rate).

Families become smaller: the proportion with five or more members falls sharply, while that for three or four remains constant.

An ageing population: the percentage between 20 and 29 years of age falls, especially after 1980.
The key economic assumptions are:]/
Strong real income growth: real GNP growth in excess of \(5 \%\) per annum through 1978, slowing to \(2 \%\) for 1979-80, stabilizing at around \(3 \%\) per annum thereafter.

Slowing inflation: the overall G.N.P. deflator rises at around \(5.5 \%\) per annum through 1980, slowing towards \(4 \%\) by 1985 , and reaching \(3 \%\) per annum by 2000 .

Declining unemployment-rate: unemployment falls towards a \(5 \%\) rate by the mid-1980's, then slowly trends towards \(3 \%\) by 2000.

Slowly increasing 'real' automobile costs: operating costs are expected to outpace the overall consumer price index, especially the price of gasoline - projected to increase over \(20 \%\) in 1972 prices by 1985; however, 'real' purchase prices are expected to be quite stable.

The auto characteristics assumptions are:
Sharply reduced weights and displacements: a major domestic downsizing program, applied to each size-class in succession, reducing curb-weights about \(30 \%\), and engine displacements about \(40 \%\), by 1990.

Efficiency improvements: technological developments are projected to yield increases in fuel efficiency totalling \(11 \%\) for 1976-80; thereafter these gains are held to \(1 \%\) per annum on the assumption of more stringent pollution standards.

\subsection*{1.4.2 BASELINE FORECAST}

The outstanding features of the forecast made on the basis of the above assumptions are:

I/ Based upon the Wharton Long-Term Econometric Model forecast, November, 1976.

Strong short-run sales demand: new registrations growth continues, especially in 1977 and 1981, the latter containing a record peak of over 12 \(\frac{1}{2}\) million units:
Slower long-term sales growth: during the 1980's new registrations show little, if any, growth, then a slow upward trend resumes, sales just reaching 14 million units in 2000.

Declining growth-rate for stock: the net result of the trends foreseen for desired stock, new registrations, and scrappage, is a total end-of-year stock of cars in operation of 132 million units by 2000. Most of the increase from the 1975 total of 97 million occurs in the first 10 years, with increments of 10 million units occurring in each of the periods 1975-1980 and 1980-1985. The remaining 15 million increase occurs after 1985, at a steadily decreasing rate.

Sustained 'large car' recovery: the shift towards mid and full-sized cars is sustained, their joint market share rising from \(40 \%\) in 1975 to over \(51 \%\), while the small-car share declines from \(51 \%\) to \(38 \%\), mostly at the expense of subcompacts.

\subsection*{1.4.3 SENSITIVITY ANALYSIS}

The sensitivity of these results to changing assumptions can be analyzed by observing the percentage changes in the forecast levels that occur for a given percentage change in an exogenous assumption. This relative measure is termed an "elasticity" and provides a quantitative measure of a variable's significance.
(A) With respect to income, a \(1 \%\) increase in total nominal income yields the following percentage changes:

Nominal Income Increased by 1\%, 1977-2000
\% Changes In:

Total New Registrations Size-Class Shares:

Subcompacts
Compacts
Mid-Size
Full-Size
Luxury
'Short-Term' 'Long-Term'
(1977)
\(+5.5\)
\(-1.6\)
\(+0.2\)
-0.5
\(+0.4\)
\(-0.2 \quad-0.1\)
\(+1.8 \quad-0.7\)
\(+0.4 \quad+0.9\)

This simulation (discussed in detail in Chapter 5 ) reveals the powerful
immediate impact of income on total sales, with an elasticity of 5.5 . However, the adjustment is virtually instantaneous, with very slight long-run effects on total stock and sales. Initially, the income increase induces both trading-up to the more expensive cars and increased options expenditures for every class. Hence the average cost per mile increases slightly (by \(0.1 \%\) in the first year). The initial 'trading-up' shifts are substantial - full-size gains by almost \(2 \%\) (relative, not absolute), with subcompacts faring the worst. In the longer-run the income distribution shifts due to the higher income level. As the proportion in the \(\$ 15,000\) or over real income category rises, luxury gains ground, and a swing back to the smaller cars occurs, leaving the distribution of actual stock virtually unchanged, except for the slight luxury increases.
(B) The corresponding results for each 1\% increase in gas prices are as follows:

Gas Price/Gallon Increases 1\%, 1977-2000
\% Changes In:

Total New Registrations Size-Class Shares:

Subcompacts
Compacts Mid-Size Full-Size Luxury
'Short-Term' 'Long-Term' (1977)
\(-0.2\)
\begin{tabular}{rr}
+0.8 & +0.3 \\
-0.1 & +0.1 \\
-- &.-- \\
-0.7 & -0.3 \\
-- &.-
\end{tabular}

Our capitalized cost per mile measures increase about \(0.2 \%\) for a \(1 \%\) price hike, with subcompacts at \(0.18 \%\), and full-size at 0.22 . The redistribution among classes leaves compacts and mid-size with little net change, but the subcompact and full-size shares shift significantly. In the longer-run, however, it is clear that the impacts are substantially reduced. This can be seen by noting that if the long-run subcompact market share was \(20 \%\), the gasoline price
increase needed to yield a \(21 \%\) share (a \(5 \%\) increase) would be \(17 \%\) ( \(5 \div 0.3\) ). Because of the shift to cheaper cars, the average cost per mile increase is moderated to less than \(0.2 \%\), and thus the immediate effect on new registrations is not severe, while the long-run impact is very slight.
(C) In the case of an 'across the board' \(1 \%\) point increase in the sales tax rate, we find the following responses:

Increase Sales Tax by \(1 \%\) Point, 1977-2000
\begin{tabular}{lcc} 
\% Changes In: & \begin{tabular}{c} 
Short-Term' \\
\((1977)\)
\end{tabular} & \begin{tabular}{c} 
Long-Term' \\
\((1987)\)
\end{tabular} \\
Total New Registrations & -1.46 & -0.10 \\
Size-Class Shares: & & \\
Subcompacts & +0.8 & +0.6 \\
Compacts & +0.4 & +0.2 \\
Mid-Size & +0.1 &.-- \\
Full-Size & -1.0 & -0.5 \\
Luxury & -0.1 & -0.1
\end{tabular}

In this example, capitalized costs per mile rise about twice as much as for the gas price increase - the elasticities vary around 0.4. Another difference is that (with the exception of luxury whose cost per mile rises over \(0.5 \%\) ), there is naturally less shifting in relative costs.

The main reason why the shares change so significantly is a "trading-down" response - auto costs have risen but income is unchanged. This is why the effects on the size-class distribution tend to be more enduring in the long-run. The implied behavior here is that a significant proportion of full-size buyers switch to the mid-size class which in turn loses an off-setting amount to the small-car classes, while some "marginal" compact buyers transfer to subcompacts. Nor surprisingly, the luxury share shows little response. Even with the switch to cheaper cars, we can see that new registrations are quite sensitive to purchase costs, falling about \(1 \frac{1}{2} \%\) in the first year. Once again, the long-run
effect is much less dramatic.

A common thread running throughout these exercises is the stabilizing nature of the model's reactions. Even substantial "exogenous" shocks are rapidly absorbed, and the long-run effects are relatively minor. In large part this stability arises from the sensitivity of the size-class shares to shifts in relative costs. This means that that any given cost increase will induce shifts towards the cheaper classes, moderating the change in average costs, and hence reducing the ultimate impacts on desired stock and new sales.

\subsection*{1.5 CONCLUDING REMARKS}

This Executive Summary has sought to outline the structure of, and the results derived from, the Wharton Automobile Demand Model described in more comprehensive detail in the remainder of this final report.

This model was developed on behalf of the Transportation Systems Center of the Department of Transportation by Wharton Econometric Forecasting Associates, Inc. It is very large, and therefore quite complex, with some eighty stochastically estimated behavioral relationships plus some three hundred associated identities.

While size and complexity are not in themselves virtues, they permit the model to offer for analysis what we believe to be an unparalled array of detailed forecasts and policy and scenario instruments relating to the automobile market. With respect to the latter, not only do we distinguish eighteen economic variables that impact on the automobile market, but also fifteen separate demographic trends, while twelve categories of automobile taxes may be applied. Finally, the extensive analysis of fuel efficiency involves seven vehicle characteristics for each size-class.

In conclusion, therefore, the model provides both a detailed long-term market outlook and the ability to observe changes arising from the two pressing issues of great current concern: environmental policy and energy conservation policy.

\section*{2. INTRODUCTION}

The main body of the report is divided into three chapters and three appendices. The key model features are discussed in Chapters 3 and 4 in Volume I, while Volume II contains the simulation analysis in Chapter 5. Details of data and estimation are in the appendices in Volume III.

The description of the model in Chapter 3 is of fundamental importance in understnading how the model works and how it was constructed, why we adopted this approach, what goes into the model in terms of assumptions and what comes out of the model in terms of projections.

Despite the technical nature of this report, the general reader should find the material in Chapter 3 comprehensible. Econometricians and modelbuilders will find a more detailed discussion and complete presentation of model equations contained in Appendix \(A 2\), Volume III.

The construction of a large and complex model inevitably requires a large volume of data. In the present instance the automobile data, in particular, required extensive organization and estimation. Two key concepts, the size classification and capitalized cost per mile, are defined and discussed in Chapter 3. Apart from this preliminary treatment, however, all the details of the data base underpinning the model are presented in Appendix Al, Volume III.

It is our belief that the scope and magnitude of this data base is such that its potential usefulness rivals that of the model itself. For instance, we compiled 57 items of information for 2,234 domestic cars (1947 to 1974) and 20 items for 982 foreign (1948 to 1975). In addition
to this model-specific data we compiled aggregate data on new registrations and cars in operation, by state for 1969 through 1972 and for the U.S. for 1948 to 1974. Additional estimates were made for auto stocks and costs (by class) by age of vehicle. Selected examples of this material are presented in Appendix Al.

Chapters 4 and 5 concern themselves with results. Baseline forecasts through the year 2000 are presented in Chapter 4, along with observed elasticities (multipliers) for various exogenous variables (taken with repsect to this baseline). The general outlook underlying the exogenous assumptions is discussed, with the specific values involved being given in Appendix A3, Volume III.

Finally, Chapter 5 (Volume II) addresses the important issue of "what if..." Here we examine the implications of certain 'controlled' changes in critical factors affecting the automobile market. These simulations of alternative events--'scenarios'--are extremely important. For a longterm model of this type they may be considered of greater significance than any single projection.

Any particular forecast involves specific assumptions about the world 'outside' the market for autos. No matter how good the model is, the results will only be as accurate as these assumptions. The simulation analysis, on the other hand, indicates the relative impact of certain events and policies compared to what otherwise would have occurred. This allows us to deduce policy implications whose accuracy does depend upon the degree to which the model realistically reflects the behavior of the automobile market.

\subsection*{3.1 OBJECTIVES}

The design activity of any model should include consideration of the potential research applications of the model and the requirements of the expected model user set concerning the desired outputs. Therefore, the first step in model design required a definition of the desired forecast horizon and an identification of the various relevant policy assumption variables. In structuring the model, attention was given to the various expected model users and the circumstances under which they would exercise the model. Based on these general design rules, the model of the U.S. long-run demand for autos has been structured to meet the following key criteria and characteristics:

Provide an easily useable tool for forecasting the long-run demand for autos (the auto stock), under a wide range of alternative assumptions, through the year 2000.

The long-run forecast output includes total stocks; vehicle miles driven; the composition of the stock by size class; the yearly demand for new cars and the yearly scrappage of cars, both disaggregated by size class; new car prices disaggregated by size class; and used car prices disaggregated by size class and vintage.

The equations predicting the long-run demand for autos include explanatory variables measuring income and economic activity, demographic factors, transportation system characteristics, and the real cost of owning and operating automobiles.

All model inputs are obtainable from a long-run macroeconomic forecasting model (in this case the Wharton Annual and Industry Forecasting Model); are projected by a respected independent source, such as the demographic projections made by the U.S. Census; or fall into the realm of policy variables (such as the gasoline tax), to be manipulated by the model user.

A wide range of policy variables are incorporated, including both purchase and ownership taxes, overall and by size-class; gasoline prices and taxes; changes in travel to work induced by government funded expansion of mass transit facilities; and changes in production and running costs due to environmental and safety legislation.

The model is responsive to changes in new auto characteristics insofar as they effect ownership and operating cost, such as changes in weight, engine displacement and engine type; and an analysis is made of the determinants of fuel efficiency.

\subsection*{3.2. MODEL OVERVIEW}

\subsection*{3.2.1 INTRODUCTION}

The Wharton E.F.A. Auto Demand Model is a long-run model. That is, we are concerned with the existance of, and movement towards, longrun equilibrium levels of auto demand. The methodology of the model at the most basic level may be characterized as a stock-adjustment process
towards the equilibrium state.
3.2.2. CROSS-SECTIONAL ANALYSIS - THE DESIRED STOCK

A critical concept in the model is therefore the desired stock of autos. The desired stock is measured in units of stock, and may be defined as the long-run "steady-state" level that would exist if prices, income, population, etc. were held constant. Given this concept of an equilibrium or desired stock we then estimate the flows that affect the stock of cars in operation - new registrations and scrappage - as functions of the "gap" between the desired and actual level of stock, as well as other, cyclical, variables that affect the stock's speed of adjustment in a particular year - such as income, prices, unemployment, etc.

Classical economic theory indicates that the estimation of the determinants of long-run equilibra cannot be made using time-series data. Rather, the appropriate methodology is cross-sectional analysis, at one point in time. If we wish to analyze the characteristics of the consumer's decision making, then we must hold tastes, the choice available, and technology constant. I/ In addition, the cross-sectional approach offers much greater variation (across states) in such critical factors as demographic characteristics and the relative costs of auto

\footnotetext{
1/ For an early study of this kind relating to autos see F.M.Fisher, Z. Griliches and C. Kaysen, "The Costs of Automobile Model Changes Since 1949", Journal of Political Economy, Vol. LXX (October, 1962) No. 5, pp. 433-457.
}
operation and ownership than does time-series analysis. \({ }^{\text {I/ This greater }}\) within-sample variation of the cross-sectional data offers a much wider potential range of applicability for forecasting and simulation.

\subsection*{3.2.3. DECISION MAKERS - THE FAMILY UNIT}

Throughout the model our decision-maker is taken as the family unit. Clearly per capita variables are not appropriate - auto demand would then be principally determined by the age and sex distribution of the population. However the substitution of number of family units for number of households as the basic scale variable deserves special attention. Households are defined by the U.S. Census Bureau as "all persons who occupy a housing unit" ...A household includes the related family members and all the unrelated persons, if any, such as lodgers, foster children, wards, or employees who share the housing unit. A person living alone or a group of unrelated persons sharing the same unit as partners is also counted as a household. \({ }^{2 /}\) Since households include as a single unit individuals who most likely would not jointly own cars, households was rejected as the "scale variable". Instead, the number of family units (FM) was chosen as the "scale variable". We have

\footnotetext{
I/ As observed by Charlotte Chamberlain in her study, A Preliminary Model of Auto Choice by Class of Car: Aggregate State Data, \#DP-SP-26 TSC, Department of Transportation, Cambridge, Mass., (March 1974, unpubl ished)

2/ Statistical Abstract of The United States, 1975, U.S. Department of Commerce, Bureau of The Census, p. 3.
}
defined family units as the number of families plus the number of unrelated individuals. These two series are defined by the U.S. Census Bureau as follows: 1/

> Family - The term "family" refers to a group of two or more persons related by blood, marriage, or adoption who reside together in a household.

> Unrelated Individuals - "Unrelated Individuals" refers to persons (other than inmates of institutions)who are not living with any relatives.

We believe that family units, defined as the sum of the number of families and the number of unrelated individuals, is a better measure of the number of decision units involved in the auto market than would be the number of households.

\subsection*{3.2.4. STOCK - SHARE APPROACH}

Our methodology distinguishes a two-stage, sequential decision process. In the first, the level of desired stock per family unit is determined-the chosen number of (undifferentiated) units. In the second stage, given a purchasing decision, we analyze the choice between classes of autos, this being a question of substitution and the comparison of relative characteristics. The correct approach in a case of this kind is a "shares" formulation, herein developed as a logit-style model, i.e. the estimated

\footnotetext{
I/ Statistical Abstract of The United States, 1975 U.S. Department of Cormerce, Bureau of The Census, p. 3.
}
variable is the class "odds" (share \(X\) divided by one minus \(X\) ). I/
Concerning the correct analysis of class shares, while we agree with Chamberlain that equations estimated across states yield predictions of "desired" or "long-run" adjustments to changes in the explanatory variables, we disagree with her choice of single year new car sales shares as a dependent variable. 2/ Ideally what should be explained by the equation is desired composition of the stock. Observed sales compostion in the state for any given year may not reflect desired composition of the stock. However, we know why Chamberlain chose to explain sales share rather than stock share, namely, R.L. Polk and Co. did not produce a useful breakdown of stock by state by year. 3/

We feel that the desired stock composition may be approximated

I/ Numerous examples exist of this standard logit approach based on discrete choice models having explicit microeconomic foundations. Some selected references are: D. McFadden, "Conditional Logit Analysis of Qualitative Choice Behaviour", in Frontiers in Econometrics, ed. P. Zarembka, Academic Press, New York, 1975, pp. 105-142; M. Baughman and P. Joskow "The Effects of Fuel Prices on Residential Appliance Choice in The United States," Land Economics, Vol. 50, No. 1, pp. 41-49, February 1974; and an early application to autos: M.J. Farrell, "The Demand for Motor-Cars in The United States", Journal of The Royal Statistical Society, Vol. 117, pp. 171-193, 1954. Studies of this type employ cross-sectional data, interpreting the results as long-run equilibrium stock levels, with inter-class substitution, and, as in our approach, we have a clear analogy to a long-run investment model.
2/ A Preliminary Model of Auto Choice (op. cit.)
3/ R.L. Polk and Co. is the sole source of regional detailed information on autos and has recently started producing a breakdown of the auto stock by size class but 1975 is the first year for which these data will be available by state.
by averaging sales shares over a number of years. - We have chosen to estimate desired (or long run equilibrium) auto stock and auto stock composition from aggregate state data for 1972. The year 1972 was chosen as it was the most recent year prior to the "oil crisis". Earlier years were ruled out due to the recent emergence of compacts (early 1960's) and subcompacts (late 1960's) which are destined to account for an increasing share of the stock in the face of expected further increases in fuel costs.

Given that the year 1972 followed several years of quite stable income and economic activity (excepting the minor recession in early 1970) and that no dramatic relative price changes had occurred, one can assert that total stock of autos by state ( \(K_{S}\) ) was close to its equilibrium value ( \(K_{S}^{*}\) ). To approximate the desired shares \(\left(S H R_{S c}^{*}\right.\) ) of the stock in 1972, the share of new car sales by class over the period 1971 to 1972 is computed as follows:-
\[
\mathrm{SHR}_{s, c}^{*}=\frac{\sum_{\mathrm{t}=1971}^{1972} \mathrm{AN}_{s, c, t}}{\sum_{\mathrm{t}=1971}\left(\Sigma \mathrm{AN}_{s, c, t}\right)}
\]
where \(A_{s, c, t}\) is new car sales within state \(s\) of class \(c\) in year \(t\).
The "desired" stock by state and class (in 1972) is thus defined as:

1/ Initially we had planned to use sales shares from 1969 to 1972. However, upon close examination of the data by state 1969 to 1972 and for the U.S. 1969 to 1972, we decided that including the two earlier years would bias the desired share of subcompacts downward (vis-a-vis compacts) even though the combined subcompact-compact share was quite stable.
2/ The empirical measure is therefore close to that used by Chamberlain; desired shares are approximated using 1971 and 1972 sales.
\[
K_{s, c}^{*}=\left(S H R^{*}{ }_{s, c}\right) *\left(K_{s}^{*}\right)
\]

\subsection*{3.2.5. SIZE CLASS DEFINITIONS}

The "shares of stock" procedure is intuitively straightforward. In addition, of course, we must have shares of actual stock and new registrations (and scrappage) for the time-series analysis of the stock adjustment process. We therefore require a straightforward and unambiguous way to divide up these stocks and flows. The definition of the size classes is therefore crucial to the analysis. The allocation scheme must be such that the criteria for a particular class are constant throughout the study. Whatever kind of scheme is considered, these criteria must be different from other possible explanatory variables in the share equation. For example, if wheelbase were the only classification criterion, then wheelbase should not appear on the right-hand side of the regression equation, since that would result in an identification problem.

The criteria for selection are in fact multi-dimensional, which would seem to allow a limited set of criterion variables to appear on the right-hand side. An appropriate disaggregation appeared to be to divide automobiles into five classes: subcompacts, compacts, mid-size, full-size, and luxury cars. The criterion for allocation is primarily, but not entirely, wheelbase. I/ Price, overall dimensions, and estimated seating

II We had originally planned to use a measure of seating capacity, but found intractible the construction of such a series over the period 1948 to 1974 for domestic and foreign cars. Price is clearly what distinguishes the luxury class.
capacity also play a role. However, wheelbase plus any one of the other characteristics will very likely yield the correct classification. The classification is one that we feel is reasonably intuitive. Further, it minimizes the number of potential misclassifications. It should be stressed, however, that the wheelbase criteria is essentially a proxy measure of seating capacity and internal dimensions l/(excepting luxury). It may be noted that the classification scheme is in approximate conformity with that of Chamberlain \(\underline{2 /}\) who used a price classification.

The classification scheme has its primary justification in an empirical as well as a theoretical sense. Essentially, cars within a particular class compete more closely than cars in distinct classes, i.e. the interclass elasticity of substitution is lower than the intra-class elasticity. This fact should make sense in so far as the classification was set up to distinguish among different types of vehicles.

While numerous borderline decisions were made in classifying specific cars, \(\frac{3 /}{}\) we shall concentrate here on the general rules followed. The general rules for defining the size class shares are as follows:

Subcompacts: All cars with a wheelbase of 100 inches or less (excluding luxury cars).

Compacts: All cars with a wheelbase greater than 100 inches and less than or equal to 111 inches (excluding luxury cars).

\footnotetext{
Hence the new 1977 General Motors full-size models retain the full-size classification despite the wheelbase reductions.

2/ A Prel iminary Model of Auto Choice (op. cit.)
3/ For a detailed discussion see Appendix A1, page A1-4.
}

Domestic Mid-Size Cars: All cars with a wheelbase greater than 111 inches and less than or equal to 118 inches (excluding luxury cars) only domestic cars are given this classification. I/

Domestic Full-Size Cars: All cars with a wheelbase greater than 118 inches (excluding luxury cars) only domestif,cars are given this class designation.

Luxury Cars: Since the basis for this is price, the cut-off is somewhat arbitrary. However, the lowest price cars in this class are generally (for domestics) the Buick Electra 225, the Oldsmobile 98, and the Chrysler New Yorker. Foreign cars with a price greater than or equal to the lower priced member of the çars mentioned above are included in this class.

\subsection*{3.2.6. STRUCTURAL RELATIONSHIPS}

For the year 1972, we employed state data to estimate cross-sectional relationships explaining the long-run influence of auto costs, income, demographic factors and transportation system characteristics on total stock and its share-composition by size class. One would, of course, expect auto costs and the availability of public transportation facilities to be negatively related to the desired total stock. Demographic factors would vary--some possibly having positive effects, others negative.

Income would be expected to be a positive influence - but not to a limitless extent. It seems to us reasonable to postulate a "saturation" effect: beyond a certain point further income increases would lead to

There are therefore only three foreign car categories. The reader is again referred to page Al-4 for details.
little or no addition to desired stock. To capture this concept, the percentage of families earning \(\$ 15,000\) or more (measured in 1970\$) was introduced - this figure having been suggested by a number of surveys. \({ }^{\text {I/ }}\)

It could be argued that desired stock should primarily be considered a function of some concept of desired total vehicle miles (VMT). Initially we had planned to test this hypothesis by estimating a function for desired VMT, but the only data available on a state by state basis are VMT for all vehicles (including trucks, buses, etc.) and these proved totally unsatisfactory. The total stock equation may then be viewed as a reduced form, if you will, the determinants of desired VMT affecting the stock directly.

The size-class shares were estimated as functions of the same types of variables as the total stock, with one difference being that relative costs were employed: the cost for class \(X\) relative to the average cost for all other classes except \(x\). A second distinction deals with the "income effect" phenomenon. If auto costs rise one's real income with respect to auto costs is reduced: thus, if costs for each class rose by equal proportions one would expect some "trading down" (e.g. from a full size to a mid-size) might well take place. To capture this effect the ratio of dollar income to average cost was introduced.

See Marketing and Mobility, Report of a panel of the Inter Agency Task Force on Motor Vehicle Goals beyond 1980, March 1976, pp, 2-19 to 2-32 for a review of these surveys.

It is worth re-stating that the major "decision-making" process takes place in these cross-sectional components of the model. Once satisfactorily estimated, these then had to be "translated" into the timedomain. This involves an important "heroic assumption": that we have correctly identified a sufficiently large and detailed set of characteristics affecting auto demand that the behaviour of the U.S. over time will match that of the states - i.e. that the two are equivalent in estimated behaviour.

In principle this translation is straightforward, involving the substitution of the appropriate time-series variable for the crosssectional measure initially employed. In practice the desired share equations had to be adjusted to reflect the drastically different supply situation - the consumer choice set - over the historical period (recall that the behaviour was estimated with the consumer facing 1972 alternatives). The details are given in Section 3.3, but, as one would expect, primarily involved the lack of subcompact and compact offerings in earlier years.

The remainder of the model is estimated on the basis of an annual time-series sample. Total new registrations shares of new registrations by class and used car scrappage are all estimated primarily as functions of the relationship between desired and actual stocks. One would expect the relationships between these flows and any divergence in stocks to be a powerful one because they are small relative to the total stock. I/

1/ For an illustration, see next section.

Other, essentially cyclical, variables enter these equations, these being interpreted as primarily "speed of adjustment" factors.

Completing the model structure we have an equation estimating vehicle miles traveled; an analysis of the used car market; and the estimation of all components of auto prices and costs necessary for the derivation of the cost concept employed in this study.

\subsection*{3.2.7 THE COST PER MILE CONCEPT}

The concept of auto costs developed for this study appears quite original, and is of critical importance for the model. It is, therefore, deserving of special notice. It appeared to us that previously used measures were faulty in one respect or another insofar as their conceptual foundations were concerned. We consider there to be three primary elements to a conceptually correct approach.

Firstly, an automobile, as a consumer durable item and an important capital investment, should be analyzed analogously to any other piece of capital "equipment" that incurs costs and yields benefits over time, i.e., a "present value" method is appropriate. This technique involves "dis-counting"--i.e., giving less weight to--both costs and benefits that occur in the future. The further ahead they are incurred, the less significance
is attached to them. Costs incurred today are more significant because they involve the sacrifice of present consumption--their opportunity cost is greater. Similarly, benefits accruing today are of greater value than those anticipated at some point in the future.

For the purpose of discounting we have assumed the economic vehicle life to be ten years. For each year we have computed the relevant costs.1/ These cost streams are then discounted back to present value terms. At the same time we have assumed a lifetime mileage of 100,000 miles, with higher per year mileage being driven in the earlier years. This stream of services (miles traveled) is also discounted back (at the same rate) and divided into capitalized costs. The result is the measure that we term "capitalized cost per mile."

The second issue concerns the conceptual viewpoint from which one considers the costs (and benefits) of owning and operating a vehicle. In our view all costs incurred over the economic vehicle life must be accounted for in the analysis, and not only those faced by any one owner, such as the new car buyer. Since the resulting measure will not correspond to that faced by any specific

1/The capitalized cost per mile calculation is quite complex. For all details concerning the computational procedures and assumptions employed the reader is referred to Appendix Al, Section A1.4.3., page AT-15.
individual, this equilibrium concept of capitalized cost per mile might be somewhat more loosely characterized as an index of "social" or "society" cost.

The third issue is the somewhat more pragmatic one of precisely how the costs of purchase and operation should be evaluated in each year. This clearly is an important issue, however, since we do wish to consider all costs and, most importantly, to "weight" each of them appropriately relative to their economic significance. The procedure we have adopted places the purchase cost completely in the initial year, with computed costs of financing, gasoline consumption, insurance, etc., for each year.I/

The components of auto costs are, in the main, predicted endogenous variables. There are equations (for all eight classes) explaining base sticker prices, options expenditures, and transportation charges. Taxes are computed by identity, given the exogenous/policy variable level of the overall purchase tax rate. These are the components of total purchase cost. For operating cost, we exogenously project cost indexes for every component except gasoline consumption.

\footnotetext{
1/The precise methodology was arrived at after extensive discussions with TSC staff, see Appendix Al, page Al-23.
}

Gasoline consumption is subject to detailed analysis.
Estimates of miles per gallon (MPG) were constructed for each class, I/ and relationships estimated expressing fuel efficiency as a function of weight, engine displacement, and other characteristics. These physical characteristics are exogenously projected, yielding forecasts of MPG by class, \(2 /\) which then feed into the cost per mile calculations.

\subsection*{3.3 MODEL STRUCTURE}

\subsection*{3.3.1 OUTLINE}

At its most basic level the 'skeleton' of the model can be characterized by the following elements:
--Desired Stock
--Desired Stock by Size-Class
--New Registrations
--New Registrations by Size-Class
--Scrappage

1/ See Section A1.4.2, page A1-8, and Appendix A2, page A2-16.
2/TSC staff actively participated in making these projections. We have also estimated linking equations yielding E.P.A. estimates, see 3.3.6, below.

All other components may be regarded as subordinate to the above, even though they may be very important in their own right.

The model operates as follows. \({ }^{\text {I/ }}\) We forecast or exogenousiy project every element of auto costs--including fuel efficiency. From these components, \({ }^{2 /}\) capitalized cost per mile by class is computed. Then desired stock size-class shares are determined on the basis of relative costs per mile, income relative to auto costs, income distribution, and such demographic factors as the size of families, and the population distribution by age and by geographic location. These desired shares were estimated cross-sectionally to derive equilibrium relationships.

Using these desired shares as weights an average cost per mile is computed, and this average, together with permanent income, income distribution, drivers per family, the population percentage in metropolitan areas, and the numbers of people using non-auto transportation to work, determines the total desired stock per family. This relationship was similarly estimated from cross-sectional data.

All other components of the model were estimated with time series. The addition to the stock of autos, total new registrations, is determined primarily by the relationship between desired and actual stock. When desired rises above the actual, new registrations increase (and vice-versa). The growth in real income and an index of purchase costs also have direct effects on total new registrations. New registrations shares by class are TSchematic diagrams are presented in Section 3.5, below. 2/Estimated from time-series data.
entirely determined by the desired - actual stock relationship alone; with domestic and foreign shares of new registrations also specified by class.

In order to determine current actual stocks for the new registrations analysis we must also estimate scrappage. This is again strongly affected by the desired-actual stock ratio (if desired rises relative to actual, scrappage declines). Scrappage is also strongly affected by the average age of the current stock and by changes over time in average mileage per vehicle. The unemployment rate and old car prices relative to scrap metal prices are cyclical influences. Scrappage by class is computed by identity once the total is defined.

Total vehicle miles per family is estimated in terms of the deviation from its trend value (which is a function of the vintage composition of the stock). This is strongly influenced by fleet gasoline costs, permanent income, and income distribution. This estimate feeds into scrappage as mentioned above.

The used car market analyses both purchases and a variety of price measures, with past and present new registrations and new car prices being the primary influences. These used car prices then determine the old car average price that enters the scrappage equation.

\subsection*{3.3.2 DESIRED STOCK}

With this outline of the logical structure and estimated relationships in place, we now proceed to consider these estimates in
more detail. 1 Turning first to the desired stock per family unit, this equation is presented in Table 3-7, page 3-37.

As expected, the primary determinant is real disposable family income, which has a strong positive relationship with desired stock. / However, as discussed above, we hypothesized a "saturation effect," and this is supported by the negative impact of the percentage of families with real incomes of \(\$ 15,000\) or more. \({ }^{3 /}\)

The second key variable is real capitalized cost per mile(desired-share-weighted average) which has the expected strong negative impact on desired stock. Thirdly, licensed drivers per family unit, not surprisingly, has a strong significant, positive impact. 4/ Note that this variable is automatically 'bounded' by total family size and hence is more significant historically than in a forecast sense.

The availability of public transit is represented by the number of persons (per family) using non-auto transportation to work.5/

1/ As this detail is presented the reader should refer back to the above introduction and to the methodology discussion of the preceding section.
2/ This section presents a summary discussion. For a complete treatment of the equation estimates, evaluation of results and alternatives examined, the reader is referred to Appendix A.2.
3/The offsetting effect of PER15+ cannot readily be evaluated since it itself is a (positive) function of income.
4/ Licensed drivers relative to the driving age population has been rising by a pure logarithmic time trend. No behavioral or economic influences had any effect. Thus licensed drivers is exogenous (projected by the above trend).
5 Public transit availability data are not produced consistently by state. We elected not to model non-auto travel to work due to the data problems.

This "commuting" measure has a relatively minor negative influence on stock; however, since it has sharply declined historically, it has a potential for significant future effect.

Finally, the metropolitan population has a slight positive impact, this percentage reflecting large suburban ring populations which tend to have above-average numbers of cars per family. Again, this variable's future influence is somewhat limited since it has already reached \(75 \%\) for the U.S.

In the estimation of desired shares by class (Table 3-1, page 3-37) we modeled the small car share (subcompacts and compacts) jointly, the subcompacts share relative to combined small cars, and the mid-size, full-size, and luxury shares.I/

Relative cost per mile--own cost over other cost--is by far the most important factor in all the share equations except luxury, having a significant negative effect throughout. The second important factor is income relative to average costs per mile. This represents the "trading down" effect of general cost inflation hypothesized in Section 3.2 (and the converse: increasing affluence relative to auto costs implies "trading up"). Full size suffers the most from "trading down", with compacts gaining the most, and mid-size having a weak tendancy for a small net loss. Luxury cars are not affected, as might be expected.

1/The combination was made only after extensive experimentation.
Conceivably this form was superior because subcompacts and compacts are closer competitors than the other classes. We experimented with combining mid-size and full-size with no success.

Next in general significance are various demographic factors.
Increasing numbers of 3 and 4 member families increase the mid-size share, primarily at the expense of full-sized cars but the percent of families with 5 or more members has a positive effect on full-sized. People between the ages of 20 and 29 years have a strong preference for "sporty" small cars, and a slight preference for subcompacts within that group. The number of licensed drivers per family also tends to strongly increase the subcompact share (more second and third cars). The metropolitan population tends to buy somewhat more luxury cars.

Income distribution strongly affects some classes. Higher income families buy significantly more luxury cars, at the expense of full-size, and also buy more (second and third) small cars.! Finally, as is obvious from inspection of Table 3-1, we had to include regional dummy variables (defined to coincide with the 9 census regions) in all the desired share equations except the full-size share equation. These regional dummies suggest the following:

New England consumers demonstrate a stronger preference for smaller cars (subcompact, compact, and mid-size) and purchase a smaller share of luxury cars than would be expected given income, costs, and demographic factors.

Mountain and Pacific Region consumers purchase a larger share of combined subcompacts and compacts and a larger share of subcompacts within the combined subcompact and compact share than would be expected given income, costs, and demographic factors. Consumers in the mountain region also purchase fewer mid-size cars than would be expected given the other variables.

T"Unscrambled" elasticities are also presented in Table 3-1, page 3-39.

West South Central Region consumers purchase fewer small cars (subcompacts, compacts, and mid-size) and more luxury cars than would be expected given income, costs, and demographic factors.

\subsection*{3.3.3 TRANSLATION TO TIME SERIES}

The equations described above were estimated for the 1972 crosssection. They therefore had to be "translated" into the time domain. The logical way to do this procedure is to first translate the desired share equations, and then the desired stock equation since the causality between these groups of equations (so ordered) is strictly recursive. \({ }^{\text {I/ }}\) The first step in converting the desired share equations to the time domain involved substitution of percent of population living in a given census region for the 0 or 1 regional dummies used in estimating the equations. Then, historical time-series values were similarly substituted for the other variables.

Now, as noted in Section 3.2, the long-run relationships were estimated, conceptually, with the consumer facing the 1972 model offerings. Therefore, the desired share by size class equations were adjusted over the historical period to reflect the following factors:
1. Combined Subcompact and Compact Share
a. Adjust equation downward in 1969 and 1968 backward to reflect lack of supply of U.S. subcompacts.
b. Adjust equation downward in 1959 and 1958 back to reflect lack of supply of U.S. compacts.

I/The desired share equations are highly simultaneous among themselves, but are not directly influenced by the size of the desired stock which itself is influenced by the desired shares within the stock.

\section*{2. Subcompact Share of Combined \\ Subcompact and Compact Share}
a. Adjust equation steadily downward between 1971 and 1967 (as you go backwards) to reflect the disappearance of U.S. subcompact supply and the disappearance of Toyota and Datsun as major suppliers in the market. Surprisingly the adjustment was no longer necessary by 1963 (again as one goes back) suggesting that economic, cost, and demographic factors were not favorable to subcompacts.
3. Shift to Ford, Chevrolet, and Plymouth from Full-Size to Mid-Size Between 1964 and 1959 (again going backwards)
a. This required a gradual upward shift in the mid-size share which was held constant from 1958 back and an opposite downward shift in the full-size group which was also held constant from 1958 back.
4. The Luxury Share Equations exhibited a steady but small upward bias from 1968 backwards. As a result, this equation was adjusted downward by 0.0125 from this point backward.

The final projected desired shares by size class are shown in Table 3-2, page 3-42.1/

Given the estimated desired shares over time, extrapolating the desired stock backward over time required that the value for the variable PER15+ (percentage of families earning in excess of \(\$ 15,000\) in 1970 dollars) not be permitted to fall below \(20 \%\) since as this variable declines to very low levels ( \(5 \%\) in 1954), the desired stock of autos

I/A11 share equation estimates go through the process of reconciliation so that the adjusted summation equals one. This is done by summing all classes (except luxury)and dividing the unadjusted shares (except luxury) by their unadjusted sum divided by one minus luxury's share. Luxury is excluded because the share and its fluctuations are so small.
rises, failịng to declịne to a sensible level.
By imposing the constraint that the value of PER15+ entering the equation not be allowed to fall below \(20 \%\), the equation produced a very sensible time series for the desired stock. The intent in including the variable (PER15+) in the desired stock equation was to capture the income saturation effect; not to suggest that as this variable fell to its low historical levels that the desired stock would be held up at high levels. For the purposes of forecasting, in order to guarantee that increases in income can never lead to reductions in the desired stock (by increasing PER15+) we have imposed, in the model coding, the constraint that if the negative impact of PER15+ more than offsets the positive influence of permanent income the net effect is set to zero. The estimated 'historical' desired stock is given in Table 3-3, page 3-43.

\subsection*{3.3.4 NEW REGISTRATIONS AND SCRAPPAGE}

On the basis of these desired shares and stock series, the total new registrations equation was estimated using time series (Table 3-4, page 3-44). Total new registrations respond strongly to changes in the desired stock, with a positive elasticity of 3.8.

The dynamics of this equation are of interest. If the actual and desired stock were in equilibrium at 100.0 million units the previous year, and new registrations and scrappage (last year) were 10.0 million units, a \(10 \%\) increase in the desired stock implies a desired increase to 110.0 million units. New car sales would increase to 14 million units
the first year which, if scrappage were to remain at 10 million units, would lead to an end of year stock of 104 million units. In the second year, new registrations would decline from 14 million but would remain well above 10 million. This process would continue until the actual and desired stock were in equilibrium. However, the new equilibrium stock would be 110 million units which, assuming an expected life of a car of 10 years, would \(u l\) timately lead to equilibrium new registration and scrappage of 11 million units. Somewhere in time between the initial increase in desired stock and the final equilibrium, new registrations could be expected to fall below 11 million units, and possibly below 10 million units, because the initial jump in new car sales would produce a younger than "average" stock and lower than "normal" scrappage thus requiring fewer new car sales to maintain the desired stock level.

Family income relative to past trends is an important positive factor, with a high elasticity of over 6 (however, the elasticity with respect to changes in this year's income is less than 4). The ratio of PUTOTNRL to PUTOTNR ( -1 ) represents a "chain link" price index of new car prices. - When this chain link index increases by \(1 \%\), representing pure price inflation, new registrations are reduced by \(1.3 \%\).

Total auto scrappage less "given" scrappage (21 year old cars which are, by assumption, removed from cars in operation), also strongly

A ratio of current year car prices weighted by last year's sales weights relative to last year's car prices also weighted by last year's sales weights.
responds (in a negative fashion) to increases in the desired stock, as may be seen in Table \(3-4\), page \(3-44\), (a \(1 \%\) increase in the desired stock leads to a \(3.8 \%\) decrease in scrappage). Therefore, the initial scrappage response to changes in desired stock (ceteois paribus") is similar in magnitude to that for new registrations. The simultaneity between new registrations and scrappage should be emphasized. If scrappage increases, new registrations rise, and vice versa. Similarly, an increase in sales will tend to push scrappage upward, other things being equal. This feedback process rapidly converges to a consistent solution.

A very powerful effect on scrappage is exerted by trends in driving habits. The impact may be summarized by saying that if miles driven per vehicle increased at a steady \(1 \%\) per annum then the scrappage rate would increase by just over 3\% per annum.

Since scrappage rates by vintage vary directly with vehicle age, the strong relationship with the average age of the current stock is almost inevitable. The estimated elasticity is 2.9 , but of course the average age is quite stable.

Finally, two variables having minor impacts are the unemployment rate and the price of old cars relative to scrap metal prices. Both tend to slightly reduce the scrappage rate and both are essentially cyclical influences.

For the new registrations shares by size-class the basic philo-
sophy behind the specification of the equations is that the sales share responds to changes in the desired stock share, and that the strength of that response is dependent on how far away the existing stock shares (after scrappage) are from the desired shares. Basically, the closer the composition of the existing stock to the desired composition of the stock, the smaller the shifts expected in the new car sales shares and vice versa.

The equation estimates are presented in Table 3-5, page 3-46. The constrained forms of the equations assume an elasticity of one for the log of the desired odds variable, with the differences between the \(\log\) of the stock share odds and the \(\log\) of the desired share odds entering with the expected negative signs. (If the existing stock share is higher than the desired share, the sales share is less than the desired share and vice versa). The constrained forms were estimated because in equilibrium one expects the new registrations share to move directly proportionately with the desired stock share.

Scrappage shares by class are computed directly by identity, given the scrappage rates that were developed (see Appendix Al).

Finally, domestic and foreign shares of new registrations are specified. Although several different forms were estimated for these equations, both over time and cross-section, these relationships were judged unsatisfactory.) We felt that the behaviour was unstable, and
that even though past trends could be 'explained' satisfactorily (in terms of statistical measures) the implied relationships were not theoretically valid. Domestic and foreign shares are therefore specified exogenously for the subcompact, compact and luxury classes, to be varied or modeled by the user.

\subsection*{3.3.5 VEHICLE MILES TRAVELED}

To estimate vehicle miles traveled (VMT) per family we adopted a classical demand approach, viewing this as the utilization of the stock of autos per family. We therefore adjusted for the variation in VMT that is due to a changing vintage distribution of the stock--we are not attempting to explain changes in the stock but changes in the intensity of use, given the existing stock.

Real gas cost per mile has a strong negative influence on vehicle miles per family, with an elasticity of 0.24 . Note that gasoline cost was computed using our estimate of average actual miles per gallon for the existing fleet. \({ }^{\text {// }}\)

We again found income distribution (PER15+) and real income per family to be interrelated. VMT was positively affected by PER15+ and negatively related to permanent income. When income rises, PER15+ will normally increase faster, yielding a net positive effect.

\footnotetext{
1/See Appendix A2 for the detailed equation discussions of this and following sections.
2/Since the gas price increase will increase the smaller cars' new registrations share, average fuel efficiency would (slowly) rise.
}

\subsection*{3.3.6 MILES PER GALLON}

As detailed in Appendix Al we have computed the historical values for MPG by class from individual model mpg estimated using pooled cross-sectional data. For forecasting we also had to estimate the corresponding class relationships over time.- Therefore, the city and highway mpg by class was related to the average class curb weight, engine displacement, fraction with automatic transmission (and fraction with overdrive for highway mpg), and the fractions with 4 and 6 cylinder engines.

The results are very similar to those obtained from the crosssection (which was the hoped for result). Inertial weight (curb weight +300 lbs.) has the strongest (negative) effect, with an elasticity of 0.47 for city and 0.33 for highway. Engine displacement is the second most significant (negative) factor with elasticities of 0.19 and 0.17 , respectively. The most substantial positive effect comes from 4-cylinder engines (versus the 'normal' 8-cylinder), with elasticities of 0.115 and 0.124 , respectively.

To provide additional useful model outputs we estimated linking relationships translating our estimates of actual driving mpg into their EPA equivalents. The greatest disparity was for city mileage, with the EPA being much higher (over \(30 \%\) too high). We found foreign cars

\footnotetext{
1/Since the class mpg's are sales-weighted harmonic means versus arithmetic averages for the other variables, the class relationships do not have an automatic correspondence to those for individual models.
}
received significantly lower EPA city ratings, by an average 2 mpg . I/ A weak tendency for slightly lower full-size ratings was also indicated.

Highway mpg estimates coincide more closely, with slightly higher subcompact and compact ratings relative to other sizes being indicated. Interestingly, the elasticities were approximately one in both equations, \({ }^{2 /}\) i.e., the EPA measure and ours tend to change by the same proportions.

\subsection*{3.3.7 NEW CAR PRICES}

For the domestic industry, base purchase prices are expressed as a function of production costs, in the form of a weighted index of auto industry inputs. A similar form was used for our options price series. These equations thus represent prices as a mark-up over costs.

The cost-elasticity for base prices was found to be virtually one, quite reasonably, with a further 'expectations' effect--an elasticity of 0.43 on the change in costs. For the options price series the cost-elasticity was lower (0.8) reflecting the tendency for options prices to fall relative to other costs.

Foreign base prices were estimated as a function of an average import-cost index whose components were the export prices of the six

\footnotetext{
1/Consistent with motoring media remarks that domestics have been better at "playing the EPA game." See Consumer Reports, June 1976.
2/ Evaluated at the mean.
}
major countries (Germany and Japan dominate). Not unreasonably, the elasticities were lowest for subcompacts (0.7), highest for luxury (1.1), with compacts intermediate (0.9).

Consumers' options expenditures are expressed as a function of "permanent" income per family and the 'real' maximum options price. The form in which the equations were estimated expressed actual expenditures relative to maximum options cost, in an "odds" formulation. This prevents expenditures from exceeding the estimated maximum. The cost coefficients range from 4.6 to 0.6 , while for income they vary from 1.7 to 2.9. For subcompacts PER15+ was found to have a negative impact, offsetting the high income elasticity.

Finally, the last component of pre-tax new car purchase costs, transportation charges, were estimated as a straightforward function of the U.S. transportation price index. The elasticities ranged from 1.2 for subcompacts and luxury to the essentially equivalent levels of 1.8, 1.6 , and 1.7 for compacts, mid-size, and full-size respectively.

\subsection*{3.3.8 USED CAR PRICES}

Our approach here is to estimate the relative price of one year old cars with respect to new car prices. Given these we then generate successive price-relatives (for a car aged i versus age i-1). \(1 /\)

The complete exposition and data development is contained in Appendix A1.

An intermediate step was the generation of used car volume estimates as a function of the change in new car sales (positive) and past trends in sales (negative), i.e., a sustailı: increase reduces used car sales versus the positive effect of a one-year upswing.

The price-relatives for each class all rise when used car sales are high vis-a-vis new car sales, a reasonable finding. Changes in new car prices tend to increase the price-relatives for subcompacts and compacts, implying a substitution of used for new car purchases, but decrease them for mid-size, full-size and luxury. Thus large car buyers are less sensitive to new car price increases, fewer are deterred from buying new cars, hence the used car price does not rise proportionately to the new car price increase. Finally, for compacts and mid-size an increase in new car sales share tends to increase used car prices.

Two vintage-weighted average price series were computed. The first, for cars eight years old and over, enters into the scrappage equation; the second, for all cars, was related to the Automotive News average wholesale price. The close correspondence found between the two validates, to some extent, the methodology employed.

\subsection*{3.4 MODEL INPUTS AND OUTPUTS}

While the model inputs and outputs have been discussed, both in general terms and with reference to specific equations, it is useful to present them in a collected form to give the more general reader a better grasp of what drives the model and what the model yields in terms of results.

A description of the model outputs is given in Table 3-6, page 3-48. Note that most of these outputs are distinguished by size-class. These classes are defined in Section 3.1, above. The variables can be grouped into two main categories:
(1) Desired long-run equilibrium variables,
(2) Yearly realization variables.

The former variables represent the long-run equilibrium values toward which the yearly realization variables adjust. The values of these longrun equilibrium (desired) variables change in response to changes in income and economic activity variables, demographic variables, public transportation system usage, new auto characteristics, and operation and ownershiprelated prices. Movements in the yearly realization variables are strongly related to movements in the corresponding long-run equilibrium variables (e.g., total new car sales is strongly related to changes in the desired stock) but also respond to changes in current economic conditions, costs of adjustment to the desired levels, and auto supply limitations.

Table 3-7, page 3-49, presents a description of the model inputs (exogenous policy assumptions). While all these variables can be manipulated by the model users as desired, potential sources for these exogenous projections are identified in the table. Variables of particular interest as policy-inputs include taxes on new cars by size class and gasoline taxes (item I.H), commuting transportation mode (group III), and the auto characteristics assumptions (group IV).

\subsection*{3.5. SUMMARY OF MODEL STRUCTURE}

Chart 3-A below gives a very broad picture of the overall structure of the Wharton EFA Automobile Model within the context of policy variables and other exogenous inputs (page 3-51).

Government policies feed into the foreign block via possible import quotas, anti-dumping rules, and import tariffs. Other government policies feed directly into the U.S. auto industry via emission and safety control standards, mileage standards, excise taxes on new cars, and the like.

The auto industry itself interacts with the exogenous inputs, especially economic activity. These inputs include income and its distribution, family size, the demand for public transportation services, etc. The three exogenous blocks all feed into the price block, which includes the various measures of cost per mile, a variable crucial to the entire analysis of the automobile sector.

Chart 3-B shows the detail of the long run portion of the model. The outputs of the long-run sub-model feed into the year-to-year realizations of the shorter-run sub-model. The long-run outputs are delineated in boldface and include the size of the desired stock and the desired size class share of that desired stock (page 3-52).

The two long-run outputs are each determined or driven by all of the exogenous inputs. Strictly from the exogenous point of view transportation system characteristics, demographic variables, and the income and activity variables all drive the desired stock and shares. From a more classical point of view the cost per mile of new cars also feeds in.

These costs per mile have three main determinants: the characteristics of new cars (size, horsepower, mpg, etc.), prices and taxes associated with operation (i.e., the variable costs), and new car prices. These prices are determined by supply constraints as discussed in the paragraph above, new car production costs, and taxes and tariffs, the latter being part of the arsenal of policy instruments.

Chart 3-C represents the detail surrounding the short run realization of the desired stock and shares. From the point of view of the annual sub-model the major "exogenous" inputs are the long-run outputs described previously, and the new car supply constraints, and income and activity variables (page 3-53).

The annual sub-model outputs are total vehicle miles, new car sales and the size class share of new sales. As before, the ownership and operation costs play a crucial role in the determination of those outputs. However, other parts of the model also come into play. The end of year auto stock is determined along with its composition by class and vintage. Further, the stock also plays a role in its own utilization, i.e., vehicle miles.

Another important variable in the model is unit scrappage, which is influenced by the desired stock, trends in vehicle miles per auto, and the age of the stock. Scrappage and used car prices are related through the average price and volume of used car sales. Finally, used car prices themselves are influenced by new car sales and prices.

Thus, if new car prices are taken as exogenous to the model, the ownership and operation costs are essentially simultaneous with the rest
of the model, driving the outputs, and in turn being driven by other variables which are influenced by the model autputs. The major feedback loop is through these prices, which serve as potential market equilibrators.
desired stock and share equations
\[
\ln (\text { CPMTTCAP/PC })+\underset{(3.07)}{0.421187} \ln (\mathrm{LD} / \mathrm{FM})-\underset{(1.48)}{0.0536642} \ln (\mathrm{MTWNA} / \mathrm{FM})+\underset{(1.61)}{0.0990056} \text { (NPMET/100) }
\]
\(\bar{R}^{2}=0.461 \quad \mathrm{SEE}=0.0596\)
II. Combined Share of Subcompacts and Compacts

\footnotetext{
(PER15+)
MSC/T-SC) \(-\underset{(2.91)}{1.16875} \ln (\) YDI \(/\) FM \(/ C T * Q)+\underset{(2.88)}{0.378345} \ln\)
\(+\underset{(6.06)}{0.445103}\) (DUMNEW) \(-\underset{(2.07)}{0.228363}(\) (DUMWSC \()+\underset{(3.93)}{0.321488}\)
(
}
TABLE 3-1 (Cont.)
III. Share of Subcompacts in Combined Subcompacts and Compact Share

V. Full-Size Share
\(\ln \left(\frac{\text { SHRF }}{1-8.8714-8.84702} \ln (C P M F / T-F)+\underset{(3.01)}{0.831944} \ln (Y D I / F M / C T * Q)-\underset{(6.11)}{0.506012}\right.\) (6.11) Variable definitions are presented on page 3-40,-41. \(\bar{R}^{2}=0.865\)
\(S E E=0.1070\)
Notes: All equations are estimated over 47 states excluding Oklahoma, Alaska, Hawaii, and
VI. Luxury Share

TABLE 3-1 (Cont.) Definitions
Percentage of Population Living in SMSA's
Definitions
Percentage of Population Living in SMSA's
Number of Persons in Resident Population Between 20 and 29 Years 01d
Over Number of Family Units
Consumer Price Index, All Items (Note: Is Divided by 125.3 to convert
Number of Persons in Resident Population Between 20 and 29 Years 01d
Over Number of Family Units
Consumer Price Index, All Items (Note: Is Divided by 125.3 to convert
Number of Persons in Resident Population Between 20 and 29 Years 01d
Over Number of Family Units
Consumer Price Index, All Items (Note: Is Divided by 125.3 to convert \(000^{\prime} G L \$\) Gufuse or more in 1970 dollars Permanent Real Disposable Income: Weighted Average of Current and Lagged Disposable Income (4, 3, 2, 1 weights) Deflated by The Current Year Consumer Price Index
 Per Mile (Cost per mile for subcompacts and compacts, cost per mile for mid-size, cost per miles for full-size, and cost per mile for luxury where weights are desired share in U.S. Market for 1972) \$ Disposable Income Over Number of Family Units Over Fixed Weighted Cost Per Mile for Subcompacts and Compacts (Weights are desired U.S. shares in 1972)

\section*{Desired Share of Full-Size Cars}
Desired Share of Luxury Cars
Desired Share of Mid-Size Cars
Desired Combined Share of Compact and Subcompact Cars
siej qoedwoj pue fordworqns [efol u! slej foedwosqns fo aleys palisag

\section*{Symbol
NPMET
NP20.29/FM \\ \(\because\) \\ PER15+ \\ RDI/FM \\ YDI/FM/CT*Q}
YDI/FM/SC*Q
SHRF SHRL SHRM SHRSC SHRS/SC





> Combined Subcompact and Compact Share．
> ale4s 7oeduos pue \begin{tabular}{l}
\(\stackrel{\rightharpoonup}{u}\) \\
0 \\
0 \\
0 \\
0 \\
0 \\
\(\vdots\) \\
0 \\
0 \\
0 \\
\hline
\end{tabular} Subcompacts．

> Compacts．
> Mid－Size Cars．
> Full－Size Cars．
> Luxury Cars． 4
0
0
\(\vdots\)
0 － Share of 0
0
\(i\)
\(i\)
0
0
0 0
0
\(\vdots\)
\(\vdots\)
0
0 0
0
\(\vdots\)
心
0
0 \｜\｜\｜\｜\｜\｜\｜\｜ SURSC＊A ※
む
む
\(\vdots\) \(\stackrel{\stackrel{\star}{\star}}{\stackrel{y}{*}}\) SHRC＊\(\AA\) SHIRIA＊A SHRF＊A SHRL＊A
\begin{tabular}{lll} 
& KEND*AY/FM & KEND*AY \\
1954 & 0.983 & 50.029 \\
1955 & 1.002 & 51.943 \\
1956 & 1.018 & 53.714 \\
1957 & 1.026 & 54.583 \\
1958 & 1.033 & 55.945 \\
1959 & 1.051 & 57.971 \\
1960 & 1.071 & 60.153 \\
1961 & 1.090 & 61.789 \\
1962 & 1.098 & 63.593 \\
1963 & 1.129 & 65.826 \\
1964 & 1.163 & 68.449 \\
1965 & 1.188 & 71.471 \\
1966 & 1.220 & 74.212 \\
1967 & 1.238 & 76.345 \\
1968 & 1.238 & 78.336 \\
1969 & 1.245 & 80.505 \\
1970 & 1.250 & 82.814 \\
1971 & 1.260 & 85.401 \\
1972 & 1.261 & 88.122 \\
1973 & 1.273 & 90.986 \\
1974 & 1.256 & 92.517
\end{tabular}

\section*{KEY:}
```

KEND*AY/FM = Desired stock of autos per family unit (autos per
family unit).
KEND*AY = Desired stock of autos (Millions of units).

```
TABLE 3-4
I. New Registrations (OMVUANR)
\(\ln \left(\frac{\text { OMVUANR }}{\text { OPAMUAYEND }(-1)-\text { SCMVUA }}\right)=\)
+6.0
\(\mathrm{R}^{2}=0.864\)
Period of Fit: \(1954-\)
II. Total Auto Scrappage (SCMVUA)
\(\operatorname{In}\left(\frac{\text { SCMVUA - SCMVAGIV }}{}\right)\)
OPPIVUAYEND \((-1)+\) OMVUANR
TOTAL NEW REGISTRATIONS AND SCRAPPAGE
（•740う）カ－モ \(378 \vee 1\)

－Year－End Stock of Cars in Operation
－Scrap－Metal Price
－Average Price of 01d Cars
－New Car Price，Average，Weighted by Previous Year Sales
－Previous Year Average New Car Price，Sales Weighted
－Real Disposable Income Per Family
－Permanent Family Income
Definitions：

\section*{AVAGEO－20
DUMAUTOS
KEND＊AY
NRUT
OMVUANR} OPMVUAYEND PSCRAPAV PUOLD
PUTOTNR
PUTOTNRL RDI／FM RDIP4／FM
I. Combined Subcompact and Compact New Registrations Share (SHRSCTNR)
\(\operatorname{In}\left(\frac{\text { SHRSCTNR }}{1-\text { SHRSCTNR }}\right)=\ln \left(\frac{S H R S C^{\star} A}{1-\text { SHRSC }^{\star} A}\right)+\underset{(3.97)}{0.0598815}\)
\(-\underset{(16.61)}{0.400553}\left[\ln \left(\frac{(\text { TMSCTK-SC })}{1-(T M S C T K-S C)}\right)-\ln \left(\frac{S H R S C * A}{1-\text { SHRSC*A }^{*}}\right)\right]\)
\(\vec{R}^{2}=0.932 \quad\) SEE \(=0.0483 \quad\) D.W. \(=0.83\)
Period Fit: 1954-1974
II. Subcompact Share in Combined Subcompact and Compact New Registrations (SHRS/SCTNR)
\(\operatorname{In}\left(\frac{S H R S / S C T N R}{1-S H R S / S C T N R}\right)=\operatorname{In}\left(\frac{S H R S / S C \star A}{1-S H R S / S C \star A}\right)+\frac{0.00275211}{(0.27)}\)
\(-\underset{(21.41)}{0.699549}\left[\ln \left(\frac{(T M S / S C T K-S C)}{1-(T M S / S C T K-S C)}\right)-\ln \left(\frac{S H R S / S C \star A}{1-S H R S / S C \star A}\right)\right]\)
\(\bar{R}^{2}=0.958 \quad S E E=0.0453\)
D.W. \(=1.39\)

Period of Fit: 1954-1974
III. Mid-Size Car New Registration Share (SHRMDNR)
\(\operatorname{In}\left(\frac{\text { SHRMDNR }}{1-\text { SHRMDNR }}\right)=\operatorname{In}\left(\frac{\text { SHRM*A }}{1-S H R M * A}\right)-\frac{0.00198516}{(0.66)}\)
\(-\underset{(82.94)}{0.873077}\left[\ln \left(\frac{(\text { TMMDK-SC })}{1-(T M M D K-S C)}\right)-\ln \left(\frac{S H R M * A}{1-S H R M * A}\right)\right]\)
\(\bar{R}^{2}=0.997 \quad\) SEE \(=0.0101 \quad\) D.W. \(=1.26\)
Period of Fit: 1954-1974

Note: For definitions, see page 3-47.
IV. Full-Size Car New Registrations Share (SHRFDNR): Constrained Form \(\operatorname{In}\left(\frac{\text { SHRFDNR }}{1-S H R F D N R}\right)=\operatorname{In}\left(\frac{S H R F \star A}{1-S H R F * A}\right)-\underset{(3.06)}{0.0115806}\)
\(-\frac{0.826937}{(47.12)}\left[\operatorname{In}\left(\frac{(\text { TMFDK-SC })}{1-(\text { TMFDK-SC })}\right)-\operatorname{In}\left(\frac{S H R F \star A}{1-S H R F \star A}\right)\right]\) \(\bar{R}^{2}=0.991 \quad\) SEE \(=0.0168\)
D.W. \(=1.05\)

Period of Fit: 1954-1974

\section*{V. Luxury Car New Registrations Share (SHRLTNR)}
\(\operatorname{In}\left(\frac{\text { SHRLTNR }}{1-S H R L T N R}\right)=\ln \left(\frac{S H R L * A}{1-S H R L * A}\right)+\underset{(0.37)}{0.000264892}\)
\[
\begin{array}{lll}
-\begin{array}{ll}
-0.713064 \\
(105.00)
\end{array} & {\left[\ln \left(\frac{(T M L T K-S C)}{1-(T M L T K-S C)}\right)-\ln \left(\frac{S H R L * A}{1-S H R L * A}\right)\right]} \\
\bar{R}^{2}=0.998 & \text { SEE }=0.0021 & \text { D.W. }=1.33 \\
\text { Period of Fit: } & 1954-1974
\end{array}
\]

\section*{Definitions:}

SHRscNR = Share of New Registrations, Class sc, \(s c=\) S/SCT, SCT, MD, FD, LT.

SHRsc*A \(=\) Desired Stock Share, Class sc.
\(\begin{aligned} \text { TMscK-SC }= & \text { Share of Stock, Class sc, after scrappage, shares adjusted to } \\ & \text { sum to one. Thus: }\end{aligned}\)
```

TMscK-SC = SHRscK-SC/\Sigma SHRseK-SC

```
        sc
where
```

SHRscK-SC = (OPMVUAScYEND(-1) - SCMVUASc)/ (OPMVUAYEND(-1) - SCMVUA ) =
Previous class stock less this year's class scrappage relative
to total previous stock less total current scrappage.

```
I. Desired or Long-Run Equilibrium Variables:
A. Desired Total Stock of Autos
B. Desired Shares of Stock by Class
C. Cost Per Mile Traveled for the Desired Stock
II. Yearly Realization Variables
A. Total New Registrations of Autos
B. New Registrations by Class
C. Vehicle Miles Traveled
D. Total Scrappage of Autos
E. Scrappage by Class and Vintage
F. Total Auto Stock
G. Total Stock by Class and Vintage
H. Cost Per Mile Traveled by Class
I. Overall Fleet MPG
J. New Auto MPG by Class
K. New Auto Prices by Class
L. Used Auto Prices by Class and Vintage

DESCRIPTION OF WEFA LONG-RUN AUTO DEMAND MODEL INPUTS
I. Economic Activity and Price Assumptions: 1/
A. Personal Income
B. Income Tax Payments
C. Transfer Payments
D. Unemployment Rate
E. Employment
F. Consumer Price Indices (Including CPI's Related to Auto Operation and Maintenance)
G. Retail Gasoline Price (Including Tax)
H. Interest Rates
I. Auto Ownership and Operation Tax Rates by Size Class
J. Domestic Auto Production Cost Index
K. Foreign Auto Export Price
L. Transportation Price Index
M. Scrap Metal Price Index
II. Demographic Assumptions:-
A. Number of Family Units
B. Family Size Distribution
C. Percent of Population Living in SMSA's
D. Population by Region
E. Population \(20-29\) Years Old
F. Number of Licensed Drivers
III. Transportation Mode Assumptions:
A. Growth in Urban Transit Passengers Relative to Employment
B. Growth in Urban Transit Passengers Relative to Transit Travelers to Work
C. Growth in Non-Auto, Non-Transit Travelers to Work Relative to Employment

1/ Forecasts of most of these variables are obtainable directly from the Wharton Long-Run Forecasts. Forecasts of the others can be provided via simple linking equations to the Wharton Model variables. The tax rates (item I) are policy variables.
2/ Forecasts for most of these variables are available from the U.S. Census.
A. Curb Weights for New Cars by Class
B. Engine Displacements for New Cars by Class
C. Number of Cylinders for New Cars by Class
D. Transmission Types for New Cars by Class
E. MPG Efficiency Factors for New Cars by Class
F. Urban Fraction of Vehicle Miles Traveled
G. Used Cars Price Decay Parameters
H. Ratios Class Prices to Average, Domestics

\footnotetext{
1/ Numerous projections of expected new car weight and efficiency are available from the EPA, DOT, and the Auto Industry. These two variables also can be considered policy variables to the extent that feasible improvements in miles per gallon are mandated.

2/ Efficiency is defined as mile-pounds per gallon of gas. Miles per gallon is efficiency divided by weights.
}
CHART 3A

CHART 3B
DETAIL OF THE LONG RUII AUTO MODEL

This chart shows the detail surrounding the long run equilibrium of the model. Those outputs are in bold face boxes. For detail regarding the impacts of these long run outputs see chart \(\# 3\).
CHART 3C
input and gutput detail of the long run auto monel: adjustments to the desired values or the activitits goir time.
Size Class Share or Desired
nuto Stock

\section*{4. BASELINE FORECASTS AND ELASTICITIES}

\subsection*{4.1 ASSUMPTIONS THROUGH 2000}

The assumptions that must be made concerning the world outside the automobile market are obviously critical to the relevance of the baseline forecasts. Due to their different nature, these assumptions fall naturally into three major categories: demographic trends, the economic environment, and automobile characteristics. The projections are discussed in general terms, with details and data being presented in Appen\(\operatorname{dix}\) A3.

\subsection*{4.1.1. DEMOGRAPHIC TRENDS}

The projections for the population components and other demographic variables are taken directly from, or inferred from, U.S. Bureau of the Census estimates published in various issues of Current Population Reports. The Census projections used were: total resident population (NPR); the 16 to 74 age group (NPR16.74); the 20 to 29 age group (NPR 20.29); number of families (NCF); number of unrelated individuals (NPRU); average family size (NCFMAVG); and population by region (NPRNEW, NPRWSC, NPRMTN, NPRPAC).

Throughout, we used the lowest Census projections, which are the most reasonable in the light of recent trends. For most of the period, total population grows at around \(1 \frac{1}{2}\) million (less than \(1 \%\) ) per annum, slowing during the 1990's, and approaching ZPG by 2000. The number of un-
related individuals relative to total population has been slowly rising at a declining rate, and since the average family size is projected to slowly fall, the total number of family units (NCF plus NPRU) grows at almost twice the rate of NPR - from 75 million in 1975 to 100 million by 2000.

Given the trend in NCFMAVG, the proportion of families with 5 or more members (FM5+/FM) will fall continuously, being about half its 1974 value by 2000 . The 3 or 4 member proportion (FM3+4/FM) fluctuates around a level trend through the mid-1980's, then slowly declines.

The number of licensed drivers (projected on the basis of NPR16.74) rises steadily, but relative to the number of family units (LD/FM) it slowly rises and then declines, showing no net change for the period as a whole. The labor force (NLC) is also projected on the basis of NPR16.74, with the participation rate initially rising. This produces a high la-bor-force growth rate of \(2 \frac{3}{2} \%\) p.a. for 1977-78, thereafter the growth steadily declines to under \(1 \frac{1}{2} \%(1.28 \%\) in 1985) until for 1990 onwards the labor-force growth follows that of NPR16.74 - roughly \(\frac{1}{2} \%\) p.a.

The population 20 to 29 years old, as a fraction of the total, will decline in 1977, and from 1981 onwards will fall more and more rapidly, stablizing only at the very end of the period. The metropolitan population is projected to hit \(80 \%\) of the total by 1990 , subsequently remaining unchanged. Similarly,for the regional population proportions, the changes are so gradual that the 1990 Census estimates were continued through 2000. Only for the Pacific Region is there any significant change projected: an increase from 13.2\% in 1975 to \(14.4 \%\) in 2000.

Economic prognosticators currently find themselves in a more than normally hazardous situation. Not only are they faced with a new president, but also less is "known" than usual about the precise nature and scale of future economic policies. Compounding this uncertainty is the critical question of the policy to be pursued by the OPEC nations concerning crude oil prices.

The baseline economic projections were made on the basis of the most recent Wharton Annual Long-Term Econometric Model forecast. This forecast assumes several stimulative policies on the part of the new administration, and a \(10 \%\) OPEC price increase for 1977.

\subsection*{4.1.2. BASELINE ECONOMIC OUTLOOK}

The economy is expected to continue a healthy recovery through 1978, with both real GNP growth and inflation proceeding at rates in the area of \(5.5 \%\) and unemployment falling to \(6.0 \%\). In 1979-80 a downturn or 'pause' is expected, slowing real growth to \(2 \%\), and pushing inflation back up to the \(6 \%\) range as productivity growth slows, promoting "cost-push" inflationary pressures. The unemployment rate, however, continues to fall due to the impact of an assumed jobs program.

The slowdown seems to be due to two factors. Fixed investment expenditures slow down sharply, and consumption expenditures show only slow growth, primarily because of the modest rates of increase in personal disposable income. For 1981-85, a return to real GNP growth at or above \(3 \%\) and a slower inflation rate (falling below \(4.5 \%\) ) should be possible, as the stimulative policies described pull the economy out of this, hopefully, temporary slump.

Needless to say, the stimulative policies and the slowdown lead to substantial federal deficits being sustained through 1981. By 1982 the increase in tax receipts and the slower rate of expenditures growth should produce a balanced budget.

For the international economy we expect world trade to rebound strongly as other countries recover, with growth initially above \(7 \%\), falling to a 5\% rate by 1985. World trade prices are projected to increase at about 5.5\%. The OPEC block have been assumed to increase prices by \(10 \%\) for 1977 , and thereafter maintain their 'real' price by raising crude prices in line with the general world inflation rate - i.e. 5 to 6\% per annum.

With respect to specific model inputs, total current personal income follows the aggregate growth described above, with rates in excess of \(10 \%\) for 1976-78, falling to \(8 \%\) in 1979-80, and growth continues to decline through 1985, hitting \(7.4 \%\) p.a. The growth in tax receipts consistently outpaces income, while transfer payments grow at a slower pace still. Hence the relatively modest growth in total current disposable income referred to above.

Total employment is expected to expand vigorously while the assumed jobs program is at its peak, thereafter the growth rate declines - from \(2.3 \%\) in 1979 to \(1.2 \%\) in 1985. As previously noted, the unemployment rate falls steadily, hitting \(4.9 \%\) in 1981, rising slightly in 1983-85 due to labor force growth.

The consumer installment credit rate for new autos is expected to decline slowly, in line with the discussion above, reaching \(10 \%\) by 1985 . The
rate of increase in the consumer price index is expected to fluctuate between 5 and 6\% initially, but then should fall towards \(4 \%\) by 1985.

For the period 1985-2000, we have projected a trend for real growth of \(3 \%\) p.a. with inflation running at \(3.5-4 \%\) through 1990, falling to 3-3.5\% thereafter. Therefore, personal income is projected to increase at \(6.5 \%\) through 1990 and by \(6 \%\) p.a. to 2000. The raies of increase of income taxes are set slightly above these values, with transfers initially growing at slightly lower rates than income, then (1990 on) rising to match the growth-rates of taxes (as a progressively larger proportion of the population becomes over 65 years old).

Since we anticipate that the increased participation rates projected through 1985 will stabilize by 1990 , total employment is expected to continue to increase at rates above \(1 \%\) p.a., with the unemployment rate falling to \(4 \%\) by 1990. Thereafter, we feel that the unemployment rate will decline at much slower rates (by 0.1 percentage points p.a. through 2000) and since the projected labor force growth is approximately \(0.5 \%\) p.a., total employment growth slackens, fluctuating between 0.5 to \(0.7 \%\) p.a., 1990-2000.

Production costs for the domestic automobile industry continue to outpace the overall consumer price index, growing in excess of \(6 \%\) p.a. through 1979. This rate should moderate sharply for 1981-85, to 3.5-4\%. We project this rate to continue to 1990 , falling to \(3.5 \%\) through 1995 , and slowing further to \(3.2 \%\) p.a.

After their large increases in 1975-76 foreign auto export prices will grow by only \(4 \%\) for 1977, and \(7 \%\) p.a. for 1978-79. Thereafter, their rate of increase is expected to parallel the inflation rate for U.S. im-
ports of manufactured goods. Therefore, they were projected to increase by \(4.5 \%\) p.a. through 1990, and by 4.0 p.a. for 1990 onwards.

The average retail price of gasoline (including taxes) is expected to climb sharply in 1977-78, paralleling the crude oil price trend. After increases of \(7 \%\) and \(9 \%\), respectively, we estimate rates of increase in the vicinty of \(7 \%\) for 1979-85. Then, in line with the crude oil price assumptions, we anticipate a fall to \(6 \%\) for 1986-90, with a further slackening in the rate of increase, to just under \(5 \%\) p.a., for the remainder of the period. These trends cause the gas price to rise to \(\$ 1.102\) by 1985 and to \(\$ 2.394\) by 2000. These are increases of \(100 \%\) and \(330 \%\), compared to \(60 \%\) and \(170 \%\) for overall consumer prices.

The other inputs to auto operating costs, the price indices for repairs, insurance, tires, motor oil, and parking and etc., mainly follow fluctuations in the overall rate of inflation. Auto insurance premiums show the most rapid rates of increase, averaging \(10-11 \%\) p.a. through 1980 , then consistently running 1-2 percentage points above the general inflation rate. Repair costs are a second source of increasing costs. After increasing at rates above \(7 \%\) p.a. for 1976-1980, they then increase at a rate roughly 1 percentage point above the overall rate. Parking and etc. costs will increase roughly 0.5 percentage point faster than the total CPI, while the motor oil index should increase at about the same rate. The price of tires should follow a more moderate path, rising by an average \(5 \%\) for 1976-79, then increasing at a rate of \(3.5 \%\) p.a. through 1985 and by \(3.0 \%\) p.a. thereafter.

The Wharton forecast up to 1985 assumes the following stimulative policies:
1. Easier monetary policy - this is a continuation of recent trends. By 1978 this is assumed to reduce short-term interest-rates by 80 basis points versus previous policies.
2. Increased federal spending - non-defense expenditures are raised \(\$ 15\) billion by 1979. This is accompanied by higher government employment, peaking at 250,000 in 1978.
3. Subsidized jobs program - the program is assumed to have two streams of 300,000 participants, each lasting three years, one beginning 1978 and the other in 1979.
4. Housing subsidies - a goal of 400,000 additional starts is assumed for 1979. This adds an estimated \(\$ 5\) billion to expenditures.

\subsection*{4.1.3. AUTOMOBILE CHARACTERISTICS}

The most critical elements in this category are the projections by class for curb weight, engine displacement, automatic transmission fraction, overdrive fraction, four cylinder fraction, and six cylinder fraction.

We begin with domestics. For 1976 the model specifications are known, and we employed the eight months sales data currently available to compute the class averages. In fact, 1976 specifications tended to show relatively minor changes overall. The major impacts for 1976-77 come from the higher sales of Chevettes (for domestic subcompacts), and the sharp reductions in weight and displacement for many of the full-size and luxury cars occuring in the 1977 models.

For 1977-78 we have judgementally extended the trends we presently see occurring. The rest of the domestic industry is assumed to follow GM's lead. Thus there will be more "Chevette-sized" subcompacts, midsize moves towards an "Aspen-Volare" type, and the full-size and luxury classes are downsized across the board.

The assumption we have followed is that the major effort to reduce weight and displacement will move 'down' the classes. Thus, next year GM intends to 'shrink' its mid-size models substantially (again, we feel the rest of the industry will follow suit in 1979-80). It would seem logical to assume that compacts and subcompacts will be the next candidates for major redesign programs.

Over the longer term we have been guided primarily by The Report by The Federal Task Force on Motor Vehicle Goals Beyond 1980, (Volume 2, Draft, Sept. 2, 1976). The curb weight projections (Section 5.2.5, page 5-11) distinguish "weight conscious" and "innovative" designs, 'high' and 'low' estimates, for 4.5, and 6 passenger vehicles.

The baseline curb weight for full-size is assumed to reach 30001 bs. by 1990, roughly the average of the 'high' and 'low' Task Force estimates for the "innovative" 6-passenger design. Luxury are given the same trend, with about a 300 1b. (or \(10 \%\) ) differential maintained throughout. At the opposite end of the scale, subcompacts are reduced to the 4-passenger "innovative" weight by 1990 (1900 1bs). Compacts and mid-size are placed intermediate, with compacts reaching 2300 lbs. by 1990 (actually equal to the 'low', 5-passenger, "innovative" level), and mid-size being closer to the full-size, at 2800 lbs. These average weights represent reductions for each class of about one-third.

Average displacements for the domestics have been projected on the basis of the weight reductions and downward trends in displacement/weight ratios. Current domestics have much larger engines, even relative to weight, than foreign makes. Therefore, we have reduced the domestics' ratios to approach present, comparative foreign ratios. Engine displacements are therefore reduced by about \(40 \%\).

The transmission and engine-type variables have essentially been projected on the basis of the above trends, although we have not projected any changes bevond 1981. Given the American consumers' apparent preference for the performance and flexibility of more cylinders and the convenience of automatics, we have adopted a conservative attidue with respect to these factors.

As far as foreign cars are concerned, curb weights and displacements are already so much lower than their domestic counterparts that it was difficult to establish what rates of reduction were appropriate. Consequently we assumed that foreign subcompacts would fall to the same weight in 1990 as domestics, while both compacts and luxury would still be slightly lighter than their domestic counterparts. Displacements were reduced commensurately.

With respect to efficiency improvements, we assumed gains for domestics of \(4 \%\) p.a. for 1975-76, \(3.5 \%\) p.a. for 1977-78, and \(2 \%\) for 1979-80. For this period, foreign cars were assumed to have rates of gain \(1 \% 10 w e r\) than domestics. For 1981 onwards we have applied a conservative trend of additional gains of \(1 \%\) p.a. throughout the period.

Clearly these assumptions are very judgemental. For 1976-80 the only test is one of inference based upon the predicted mpg values (see following discussion of baseline automobile forecast). For 1980 onwards, the uncertainty surrounding future environmental and safety regulations, and the doubt as to the widespread application of diesel technology, suggest to us that assuming lower rates of efficiency gain may be the most appropriate for a baseline case. Higher rates could then be assumed for scenario analysis.
4.2. BASELINE FORECAST RESULTS

To begin with, it may be noted that the model performs very well in matching 1975 and 1976 new registrations - both total and by class with only minor adjustments needed to align the initial forecasts with the data currently available. Since 1975-76 are outside the data set used to estimate the model, and the changes in new registrations (both total and by class) were very substantial, this initial success is quite encouraging.

Nonetheless, the reader is reminded that the model is aimed at long-run analysis, rather than precise year-to-year tracking - although the one does not necessarily preclude the other.

The primary outstanding characteristic of the baseline forecast is clearly the excellent outlook for new car sales over the next 5 years. We expect new registrations to total 10.2 million units for 1976 . Continued growth is anticipated for 1977 - to 11.3 million units - and, to a lesser extent, for 1978 ( 11.6 million units). With the, hopefully, mild \(1979-80\) recession, new sales dip slightiy, recovering the lost ground in 1980, with 1981 then being another year of strong growth - to a record 12.7 million units.

The second key feature is the strong, sustained recovery in the larger car market share. Our analysis clearly indicates that the 1976 resurgence in the mid- and full-size classes is by no means a temporary phenomenon. Indeed, the full-size share is expected to continue to rise through 1979 , reaching almost \(29 \%\), implying sales of 3.3 million units (compared to just 1.4 million in 1975). Mid-size sales should also hold up well, falling off somewhat from their high 1976 level, but nevertheless maintaining a respectable \(23 \%\) share.

Commensurate with these trends, small cars continue to decline in market share, the major brunt being borne by subcompacts, while compacts maintain a somewhat more stable trend. Compacts should, in fact, recover somewhat in 1979-81, back to \(20 \%\) of the market. Subcompacts, on the other hand, continue to lose ground markediy, falling to \(20 \%\) by 1980 .

The primary factor underlying these trends would appear to be income growth. Real disposable income per family is expected to show substantial, although not outstanding, growth following the drastic 1975 decline. This upward trend is halted, but not reversed, in 1979-80 and again in 1982-83. This income growth is a major causative factor in stimulating the desired stock of autos and, hence, new sales, and in increasing the full-size share, via trading up to the larger cars.

A second major influence is costs. The substantial fuel efficiency gains achieved for large cars, and those projected for the next several years, result in a relatively favorable trend in costs for larger cars vis-a-vis smaller. Our index of costs, capitalized cost per mile, shows an increase of \(16 \%\) for full-size, 1975-78, compared to about 19\% for subcompacts and compacts.

In addition to these relative changes, examining the forecast rate of growth for average real capitalized cost per mile shows automobile costs rising very slowly relative to overall inflation, except for a slight jump in 1978. Hence desired stock and new registrations are not held down by rising costs.

A third factor is that the proportion of families with real incomes of \(\$ 15,000\) or more does not recover to its 1974 level until 1980. This
is significant because this group is clearly associated with both higher luxury sales (as a substitute for full-size), and with higher subcompact sales (as second cars).

Finally, demographic trends are also unfavorable to small cars, since the population 20 to 29 years old relative to the number of family units begins to decline during this period.

Scrappage is expected to rebound strongly from its low 1974-75 levels, rising substantially in 1976-77, and again in 1979. The postponed scrappage in 1974-75 led to relatively substantial increases in the average age of the stock, by about \(4 \%\) p.a. Hence replacement demand, combined with the growth of desired stock, must be considered a not insignificant factor in spurring new sales.

As a result of these trends we expect the total end-of-year automobile stock to grow strongly from under 97 million units in 1975 to over 106 million by 1979 , with growth slackening in 1979-80 as scrappage holds at its higher level and new sales cease to increase.

Despite the growth in stock, it is significant that our forecast for total vehicle miles shows very modest growth from 1975. Indeed, examining the prediction for vehicle miles per family reveals that even this slight increase is due solely to the upward trend in the number of family units.

We expect a substantial increase in fuel efficiency through 1980. We estimate that the sales-weighted average for new sales (measured by E.P.A. standards) will exceed 20 mpg by 1980, with the "mandated" average for new domestics (assuming a 55\% urban driving ratio) just attaining the \(20 \mathrm{~m} . \mathrm{p} . \mathrm{g}\). figure. This slowly rises to 23 mpg by 1990. Our 1976-77 estimates appear to match current E.P.A. and industry estimates quite closely.

In terms of actual driving mpg, we expect to see the largest improvement for full-size, up \(27 \%\) in 1980 over 1975 levels. Well over half this improvement occurs in 1976 and 1977. Since the other classes are also expected to improve substantially, the average m.p.g. for the total fleet (again, driving mpg, not E.P.A.) should show a significant increase, to 13.5 mpg , up over \(6 \%\) from 1975-76. The combined result of our forecasts for overall fuel efficiency and vehicle miles traveled is that total gasoline consumption for automobile use is predicted to remain almost completely static, 1975 to 1980.

Over the longer term, the early and mid-1980's are years of retrenchment, with new registrations running between 12 and \(12 \frac{1}{2}\) million units. Modest growth should resume in the latter half of the decade, sales reaching 13.2 million in 1990 . Thereafter the trend is one of very slow growth, averaging under \(1 \%\) p.a., new registrations just reaching 14 million units by 2000.

In terms of shares, trends should stabilize significantly from the early 1980's through the end of the period. Compacts are expected to hold at 20 to \(21 \%\) of the market throughout. Mid-size shows a very slight increase from 1985 to 1990, rising from between 22 and \(23 \%\) to \(24 \%\). Luxury shows signs of a slow, but sustained increase, from \(9 \%\) initially to \(11 \%\) by 2000. Subcompacts' share dips to \(17 \%\) in 1984-85, recovering slightly to \(18 \%\) in the early \(1990^{\prime}\) s, and full-size slowly rises to its ultimate peak market share of \(30 \%\) in 1985 then steadily declines, back down to \(27 \%\) from 1990 onwards.

The slowing rate of growth of new sales can be traced to the modest growth in desired stock. Desired stock per family unit increases by less than \(\frac{1}{2} \%\) p.a. during the early 1980 's, and becomes virtually constant from
the late 1980's through the end of the period. Thus it would appear that saturation is attained during the latter part of the forecast period.

The moderate growth in real family income, the rising proportion of higher income families (who tend to have a more stable number of cars per family), and the slow but persistant increase in 'real' auto costs, all contribute to this finding. Therefore, the slow (and declining) rate of growth in total desired stock during the 1990's is entirely due to the upward trend in the number of family units.

This discussion of the forecast results has by necessity concentrated on the salient features of the most important series. The forecast tables presented at the end of this chapter contain predictions for 143 variables. For instance, those not covered in this discussion include all the components of new car prices and the used car market variables.

\subsection*{4.3. MODEL ELASTICITIES}

The concept of an "elasticity" (or "multiplier") is fairly straightforward - given a certain initiating change in a given variable, changes in the predictions will occur. Expressing the 'output' change relative to the 'input' change yields a quantitative indication of how important the input variable is to the results.

In terms of individual equations, since most of the model is estimated in log-linear form, elasticities can be directly observed or readily computed: a \(1 \%\) change in independent variable \(X\) yields an \(E \%\) change in the dependent variable \(Y\), and "E" is then the elasticity relationship between \(X\) and \(Y\).

For a complex and highly simultaneous model, however, the single -
equation elasticities are rarely realized - they are offset or compounded by reactions with the rest of the system. Therefore, we present in this section a selected sample of model elasticity responses in tabular forms. The elasticities take the form of \% changes relative to the existing baseline.

Since the most interesting exampies are fully presented and discussed in Chapter 5, the treatment given here is as concise as possible.
1. \(10 \%\) GASOLINE PRICE INCREASE
\begin{tabular}{|c|c|c|c|c|}
\hline \% Change in: & 1977 & 1978 & 1979 & 1980 \\
\hline Desired Stock & -. 34 & -. 33 & -. 33 & -. 32 \\
\hline Actual Stock & . 05 & . 24 & . 23 & -. 28 \\
\hline New Registrations & -2.13 & -2.97 & -2.89 & -0.47 \\
\hline Scrappage & -3.47 & -6.18 & -3.14 & +4.49 \\
\hline Vehicle Miles & -1.92 & -1.97 & -2.13 & -2.49 \\
\hline New Fleet MPG & . 75 & . 67 & . 59 & . 51 \\
\hline \multicolumn{5}{|l|}{Desired Shares:} \\
\hline Subcompacts & 4.97 & 4.85 & 4.49 & 4.20 \\
\hline Compacts & 0.0 & -. 09 & . 18 & . 41 \\
\hline Mid-Size & . 10 & . 12 & . 13 & . 15 \\
\hline Fuil-Size & -3.49 & -3.29 & -3.28 & -3.31 \\
\hline Luxury & . 01 & . 02 & . 02 & . 01 \\
\hline \multicolumn{5}{|l|}{New Reg. Shares:} \\
\hline Subcompacts & 7.85 & 7.30 & 6.36 & 5.36 \\
\hline Compacts & -. 76 & -. 57 & +. 14 & . 61 \\
\hline Mid-Size & . 44 & . 47 & . 43 & . 33 \\
\hline Full-Size & -6.71 & -5.48 & -5.08 & -4.61 \\
\hline Luxury & . 33 & . 34 & . 26 & . 14 \\
\hline \multicolumn{5}{|l|}{Capital Costs/Mile:} \\
\hline Subcompact & 1.81 & 1.79 & 1.76 & 1.73 \\
\hline Compact & 2.13 & 2.10 & 2.02 & 1.95 \\
\hline Mid-Size & 2.23 & 2.18 & 2.11 & 2.06 \\
\hline Fuil-Size & 2.16 & 2.10 & 2.06 & 2.02 \\
\hline Luxury & 1.71 & 1.68 & 1.65 & 1.62 \\
\hline Average & 1.74 & 1.71 & 1.68 & 1.64 \\
\hline
\end{tabular}

Raising gas prices by \(10 \%\) increases costs per mile by around \(2 \%\) (an elasticity of 0.2). Gasoline costs are less important to luxury costs, hence the lower increase. The different relative importance also is the reason why mid-size costs increase fractionally more than full-size.

Average costs increase less, due to the shift to subcompacts. The size-class shifts in desired shares are substantial for subcompacts and full-size. The change in desired stock is modest, but persistent, producing very reasonable results for new registrations. As can be seen, the reduction in sales tapers off quite rapidly. Scrappage tends to oscillate very sharply in this initial period. Vehicle miles traveled falls off significantly, and this tends to build up. This upward trend in response does not continue, in fact, it ultimately begins to taper off due to the very slight improvements in average fuel efficiency.

The next table examines the impact of a \(1 \%\) increase in income. Clearly income has varying effects on desired shares and new registrations by class. There is an initial "trading up" response which is very rapidly 'damped' and then compensated for by income distribution changes. The longer-run trend again indicates reductions in the smaller car shares, and an increase in the full-size share. Given that we have a \(1 \%\) initiating income change these elasticities are quite strong - at their peak values they exceed 1.0 , compared to elasticities of 0.5 to 0.8 for the gaseoline price.
2. \(1 \%\) PERSONAL INCOME INCREASE
\begin{tabular}{lrrrr} 
\% Change in: & \(\underline{1977}\) & & 1978 & \(\underline{1979}\) \\
Desired Stock & .16 & .22 & .20 & .1980 \\
Actual Stock & .53 & .65 & .51 & .29 \\
New Registrations & 5.54 & 1.54 & -.19 & -.50 \\
Scrappage & .92 & .47 & 1.12 & 1.61 \\
Vehicle Miles & & & & \\
New Fleet MPG & -.19 & -.09 & -.01 & .80 \\
& & & & .07 \\
Desired Shares: & -1.05 & -.54 & -.03 & .36 \\
Subcompacts & -.40 & -.11 & .14 & .33 \\
Compacts & -.06 & -.05 & -.04 & -.04 \\
Mid-Size & .93 & .30 & -.27 & -.73 \\
Full-Size & .29 & .54 & .77 & .94 \\
Luxury & & & &
\end{tabular}

New Reg. Shares:

Subcompacts
Compacts
Mid-Size
Full-Size
Luxury
Capital Costs/Mile:
Subcompacts
.02
Compacts
.03
\begin{tabular}{lll}
.02 & .01 & 0.0 \\
.05 & .07 & .07 \\
.04 & .04 & .04 \\
.03 & .03 & .03 \\
.02 & .02 & .02 \\
.09 & .06 & .03
\end{tabular}

As can be seen, new registrations quickly adjust after a substantial
initial impact. The increase in scrappage dies away in the longer-run.
The minute changes in costs per mile by class originate with higher options expenditures.
3. 5\% PURCHASE TAX, FULL-SIZE
\begin{tabular}{lrrrrr} 
\% Change in: & \(\underline{1977}\) & \(\underline{1978}\) & & \(\underline{1979}\) & \(\underline{1980}\) \\
Desired Stock & .04 & .04 & & .04 & .05 \\
Actual Stock & -.09 & -.04 & -.02 & -.01 \\
New Registrations & -1.25 & .43 & .31 & .29 \\
Scrappage & -.59 & .03 & .09 & .22 \\
Vehicle Miles & -.02 & -.09 & .01 & .09 \\
New Fleet MPG & 1.71 & 1.56 & 1.50 & 1.43
\end{tabular}

Desired Shares:
\[
\begin{array}{lllll}
\text { Full-Size } & -13.32 & -13.04 & -13.27 & -13.51
\end{array}
\]

New Reg. Shares:
\[
\begin{array}{lllll}
\text { Full-Size } & -25.16 & -21.07 & -19.66 & -18.41
\end{array}
\]

Capital Cost/Mile:
\begin{tabular}{lllll} 
Full-Size & 2.07 & 2.07 & 2.05 & 2.04 \\
Average & -.23 & -.20 & -.21 & -.23
\end{tabular}

The converse situation occurs with a \(5 \%\) tax on full-size autos.
Total new registrations are relatively unaffected, but the distribution changes markedly. The \(5 \%\) tax (i.e. a \(5 \%\) purchase price increase) raises the full-size cost per mile by just over \(2 \%\). This reduces the full-size shares in desired stock by over \(13 \%\), causing the new registrations share to fall even more. Each of the other classes (except luxury) gain about equally in percentage-point terms.

The very sharp redistribtuion holds average cost virtually unchanged, and this is why total new registrations are relatively unaffected. The new share distribution increases average fleet mpg significantly.

As clearly seen in Table 4, the ownership tax has virtually negligable effects compared to the purchase tax. Even the redistribution effects are much less, with full-size's registrations share falling by a modest \(5 \%\) (1.3\% points) at worst. The reason, of course, is the smaller increase in
4. \(10 \%\) OWNERSHIP TAX, FULL-SIZE
\begin{tabular}{lccccc} 
\% Change in: & \(\underline{1977}\) & & 1978 & & 1979 \\
& 0.01 & & 0.0 & & 0.0 \\
Desired Stock & 0.0 & & 0.0 & 0.0 & 0.0 \\
Actual Stock & 0.01 & & 0.01 & & 0.03 \\
New Registrations & -0.03 & 0.03 & 0.05 & 0.03 \\
Scrappage & & & & 0.05 \\
Vehicle Miles & 0.0 & 0.01 & 0.02 & 0.03 \\
New Fleet MPG & 0.34 & & 0.29 & 0.26 & 0.23
\end{tabular}

Desired Share:
Full-Size
\(-2.62\)
\(-2.41\)
\(-2.33\)
\(-2.26\)

New Reg. Share:
\[
\begin{array}{lllll}
\text { Full-Size } & -5.07 & -3.91 & -3.41 & -2.98
\end{array}
\]

Capital Costs/Mile:
\begin{tabular}{lrrrr} 
Full-Size & 0.41 & 0.38 & 0.36 & 0.34 \\
Average & -0.03 & -0.02 & -0.02 & -0.03
\end{tabular}
cost per mile - which increases by only \(0.4 \%\). The minute increase in new registrations soon disappears.

The next table is aimed at comparing the effects of purchase taxes levied on each class individually.
5. COMPARISON TABLE: \(5 \%\) PURCHASE TAX
\begin{tabular}{cccccr}
\(\%\) Change in: & \(\underline{1977}\) & & \(\underline{1978}\) & & \(\underline{1979}\)
\end{tabular}

New Reg. Shares:
(Effect on Own share
from own class tax)
Subcompacts
Compmacts -22.05
\begin{tabular}{lrrrr} 
Mid-Size & -6.05 & -5.90 & -5.68 & -5.11 \\
Full-Size & -25.16 & -21.07 & -19.66 & -18.41 \\
Luxury & -1.87 & -1.73 & -1.57 & -1.42
\end{tabular}

Capital Costs;Mile:
(Effect on own cost from own class tax)
\begin{tabular}{lllll} 
Subcompacts & 1.90 & 1.88 & 1.86 & 1.84 \\
Compacts & 1.90 & 1.90 & 1.89 & 1.89 \\
Mid-Size & 1.98 & 1.98 & 1.97 & 1.96 \\
Full-Size & 2.07 & 2.07 & 2.05 & 2.04 \\
Luxury & 2.60 & 2.59 & 2.58 & 2.56
\end{tabular}

Regarding capitalized costs per mile we observe a logical progression according to how important the purchase cost is. The results of these cost changes, however, vary widely depending on the different price elasticities.

Hence we can see that the greatest initial impact on new registrations occurs for mid-size and the lowest for compacts. In terms of shares, however, full-size clearly reacts the most, followed closely by the small-car classes, with luxury changing very little.
6. COMPARISON TABLE: \(10 \%\) OWNERSHIP TAX
\begin{tabular}{lrrrrr} 
\% Change in: & \(\underline{1977}\) & & \(\underline{1978}\) & & \(\underline{1979}\) \\
New Registrations: & & & & & 1980 \\
Tax on: Subcompacts & -0.18 & & -0.12 & & \\
Compacts & -0.01 & +0.01 & 0.01 & -0.09 \\
Mid-Size & -0.07 & -0.04 & -0.02 & 0.01 \\
Full-Size & 0.01 & 0.01 & 0.03 & 0.02 \\
Luxury & -0.03 & -0.01 & -0.01 & -0.01
\end{tabular}

New Reg. Shares:
(Effect on own share
from own class tax)
\begin{tabular}{lllll} 
Subcompacts & -7.01 & -6.06 & -5.35 & -4.70 \\
Compacts & -5.59 & -4.77 & -3.95 & -3.32 \\
Mid-Size & -1.40 & -1.28 & -1.15 & -0.96 \\
Full-Size & -5.07 & -3.91 & -3.41 & -2.98 \\
Luxury & -0.23 & -0.20 & -0.17 & -0.14
\end{tabular}

Capital Costs/Mile:
(Effect on own cost
from own class tax)
\begin{tabular}{lllll} 
Subcompacts & 0.57 & 0.54 & 0.50 & 0.47 \\
Compacts & 0.50 & 0.47 & 0.44 & 0.42 \\
Mid-Size & 0.44 & 0.42 & 0.39 & 0.37 \\
Full-Size & 0.41 & 0.38 & 0.36 & 0.34 \\
Luxury & 0.31 & 0.30 & 0.28 & 0.26
\end{tabular}

In Table 6 a similar comparison for the ownership tax is presented. The major difference here, of course, is that now the small-car classes have the greater \% cost increase. Thus subcompacts and compacts now experience the largest \% changes in new registration shares. Again, we may note the very small changes in total new sales - even the largest elasticity (subcompacts in 1977) is less than 0.02 ( \(0.18 \% / 10 \%\) ).

The last multiplier table addresses the question of increasing fuel efficiency. Compared to the baseline \(1 \%\) per annum efficiency improvement from 1979 onwards, we now have an additional \(2 \%\) p.a. increase each and every year. In this case the divergence from the baseline increases every yearthere is a compounding effect.
7. \(3 \%\) p.a. FUEL EFFICIENCY INCREASE
\begin{tabular}{lrrrrr} 
\% Change in: & \(\underline{1979}\) & & \(\underline{1980}\) & & \(\underline{1981}\) \\
& 0.06 & & & \(\underline{1982}\) \\
Desired Stock & 0.03 & 0.11 & & 0.16 & \\
Actual Stock & 0.18 & & 0.30 & 0.20 \\
New Registrations & -0.13 & -0.02 & 0.48 & 0.25 & 0.65 \\
Scrappage & & & & 0.11 \\
Vehicle Miles & 0.02 & 0.11 & 0.24 & 0.43 \\
New Fleet MPG & 1.54 & 3.05 & 4.57 & 6.08
\end{tabular}

Desired Shares:
\begin{tabular}{lcrrr} 
Subcompacts & -0.71 & -1.26 & -1.76 & -2.24 \\
Compacts & -0.05 & -0.18 & -0.41 & -0.55 \\
Mid-Size & -0.02 & -0.05 & -0.10 & -0.13 \\
Full-Size & 0.53 & 1.05 & 1.56 & 1.99 \\
Luxury & 0.0 & -0.01 & -0.01 & -0.01
\end{tabular}

New Reg. Shares:
\begin{tabular}{lrrrr} 
Subcompacts & -1.13 & -1.95 & -2.63 & -3.22 \\
Compacts & -0.02 & -0.21 & -0.56 & -0.75 \\
Mid-Size & -0.10 & -0.18 & -0.28 & -0.33 \\
Full-Size & 0.93 & 1.74 & 2.48 & 2.98 \\
Luxury & -0.06 & -0.10 & -0.13 & -0.15
\end{tabular}

Capital Cost/Mile:
\begin{tabular}{lllll} 
Subcompacts & -0.30 & -0.58 & -0.84 & -1.10 \\
Compact & -0.34 & -0.64 & -0.91 & -1.18 \\
Mid-Size & -0.36 & -0.67 & -0.97 & -1.26 \\
Full-Size & -0.35 & -0.66 & -0.97 & -1.25 \\
Luxury & -0.28 & -0.53 & -0.78 & -1.01 \\
Average & -0.29 & -0.55 & -0.80 & -1.04
\end{tabular}

The extra \(2 \%\) efficiency gain increases total new registrations by \(0.18 \%\) initially, rising to \(0.65 \%\) after four years. While registrations increase for all except the small cars, the changes in the shares indicate that they do so at very different rates.

The cost reductions are proportionately greater for the larger cars. Hence, across the board efficiency increases favor the larger, less fuel efficient cars. The effect is most noticeable for full-size, whose share rises \(0.5 \%\) initially and \(2 \%\) by 1982 i.e. full-size sales increase over 2 1/2\%
by 1982 .
Contrasting to this change, mid-size sales are raised \(1 / 3 \%\), while subcompact sales fall by \(21 / 2 \%\). Clearly these redistribution effects somewhat offset the full increase in new fleet m.p.g. - with no changes it would have been \(8 \%\) higher by 1982 rather than \(6 \%\).

\section*{TABLES OF FORECAST OUTPUT \\ BASELINE}

TABLE
NAME
PAGES
1.00
.01
1.02
1.03

Summary 4-27
Desired and Actual Auto Stocks
New Registrations
Vehicle Miles Traveled
Scrappage
E.P.A. Measures of Miles Per Gallon

Shares of New Registrations by Class

Shares by Size Class
Desired Stock
Actual Stock
New Registrations, Domestic vs. Foreign

New Registrations and Stocks 4-37 by Size Class

New Registrations
Desired Stock
Actual Stock
Capitalized Costs Per Mile
Average, Nominal and Real
By Size Class
By Foreign vs. Domestic
\begin{tabular}{llr} 
TABLE & \begin{tabular}{l} 
NAME \\
Miscellaneous \\
Desired and Actual Stocks Per \\
Family Unit and Per Auto \\
Ratios to Stock, New Registrations \\
and Scrappage
\end{tabular} & PAGES \\
Income Per Family \\
\% Families With Incomes Over \$15, 000 \\
Age of Stock
\end{tabular}\(\quad 4-47\)
TABLE NAME PAGES1.09
Used Car Market ..... 4-72
Average Wholesale Price
Price Relatives
Used Car VolumeUnadjusted Shares by Size Class4-77Desired StockNew Registrations
Technical Notes on Forecast ..... 4-82
\(\frac{0}{c}\)
E：
\begin{tabular}{l}
\(6 L^{\circ}!\) \\
\(\angle 5_{1} 1\) \\
\hline 0
\end{tabular} \begin{tabular}{l} 
m～ \\
\hdashline 0 \\
0
\end{tabular} \begin{tabular}{l}
\(n\) \\
\multirow{1}{n}{\(\Omega\)} \\
\(=-\) \\
\(=\)
\end{tabular} 00
\(=0\)
\(=0\) 킁

 \(\qquad\) 00
\(i=\)
\(i=0\)
 －－- －
 nin
\(=0\)
0
0
 N
\(\cdots\)
\(\infty\) \(\infty=\)
\(\infty-\) \(0 ㅇ\)
-2
\(-=\) 18,05
4.32


 0.225
-3.83 in
\(n_{0}\)
0
0 \(-N\)
0
0 \begin{tabular}{ll}
\(\mathfrak{n}\) & \multirow{2}{n}{} \\
10 & 5 \\
10 & 0 \\
10 &
\end{tabular} \(=2\)
0
0
0 11.476 \(\sim\)
\(\sim\)
0
\(=0\)
\(=0\) 코
0
\(0-0\)
0 \(=-n\)
\(\infty\)
\(=\) \(m o\)
0
\(0-0\)
\(0-0\) ジ にが ～～ 5 m
00
00 ：
 97．155 100.261 \(n=\)
\(\sim\)
\(\sim\)
0 Mn
\(=-\)
\(=-\) \(\infty 0\)
0
\(=-\) 0 n 00
\(=0-0\)
\(0-0\) N－ \(n=0\)
\(0=5\) \(0 \because\)
\(\infty\)
\(\infty\)
 17.30
4.20 nio
 Aavarins \(00^{\circ} 1\) 3ายva
\(\qquad\) \(\infty\)
0 197！ 1976 77．154 100,005 10.231
23.05 \(\stackrel{\approx}{\approx}\) Fin
－
－ 1027.2
00.24
 s．
\(=-\)
\(=-~\)造へ 웅
\(0 \sim\)
\(0-0\)

 1.43
1.43 96．644 8.261
-11.04 1,502
2,03
 Nm
am
am 5 m
\(\sin\)
\(\sin\) 17．15 シャ No



 mo
\(0-0\)
\(0-2\) \(\begin{array}{r}9.07 \\ \hline-207\end{array}\) MIIL AUTOSI MILL autas！ xGRIMTHI
MILL．AlITHSI
\＆GRIUTHI



 sulnv IIDESIARE STOCK OF AUIOS

AI
101 FONEIGN NEW RECOIS，
DOMESTJC NFW REGIS．
IVFhicle milfs fraveled
sulny 30 3ovadorjsit
므～～～
？2 INEW SIITMS FI．EET M．P．G，（EPA）
241 2 SINEW OOMESTIC EPA TEST M，P．G：
NEW OTMESTIC AUTOS M，P，G．
NEW F ORFIGN AUTOS M，P，G．
261
271
281 391
301
ISNUIIVASIgJa miN fu J甘णHSIC
SUECTMMPACT
\(\begin{array}{ll}301 & \text { CIMPACT } \\ 411 & \\ 421 & \\ 1131 & \text { MID－SILE } \\ 4111 & \\ 451 & \\ 461 & \text { FULL－SI } \\ 411 & \end{array}\)
Luxujuy
ここ
\[
\begin{aligned}
& \text { AILL MILESI } \\
& \text { ZGROWTHI } \\
& \text { MILL AUTOSI } \\
& \text { KGRUWTHI }
\end{aligned}
\] ニえ
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{3}{|l|}{tahle 1.00 summary} & \multirow[t]{2}{*}{1984} & \multirow[t]{2}{*}{1985} & \multirow[t]{2}{*}{1986} \\
\hline Llif 1 1 [ M & & 1981 & 198? & 1983 & & & \\
\hline llufsirin stock nt sutis & MILL Allins & 109.421 & 111.1187 & 113,319 & 115,205 & 116.997 & 118.812 \\
\hline 21 & \&Giontirl & 2.11 & 1.89 & 1.64 & 1.66 & 1,56 & 1.55 \\
\hline 31 & & & & & & & \\
\hline GIACTIIAL YK-tAIN STICK Of AUTOS & MIIL AUTOSI & 108.513 & 110,446 & 112,001 & 114.403 & 116.613 & 118.523 \\
\hline 31 & XGROMTHI & 1.27 & 1.78 & 1.77 & 1.78 & 1.93 & 1.64 \\
\hline OI IIJEw REGISTRATIONG OF Autos & MILL AUIOSi & 12.730 & 12.461 & 12.211 & 12,335 & 12,359 & 12,189 \\
\hline AI & \&GKUMTHI & 12.750
9.24 & 12.461
\(-2,11\) & -12.01 & 12,335 & 12,359
0.19 & \(12,1.37\)
-1.37 \\
\hline 81 & & & & & & & \\
\hline InI GORFITII NEW REGIS, & MILL AUTESI & 1.579 & 1.528 & 1.477 & 1,456 & 1.428 & 1,431 \\
\hline 111 & zGHOWTHI & 4,60 & -3.27 & -3,34 & -1,42 & -1,90 & 0.25 \\
\hline 121 & & & & & & & \\
\hline 131 DOMESTIC HEW REGIS. & MILL AUTOSI & 11.151 & 10,934 & 10,735 & 10,879 & 10.931 & 10.758 \\
\hline 191 & \%GMJIVTHI & 9.93 & -1.95 & -1,82 & 1,35 & 0.47 & -1,59 \\
\hline 151 & & & & & & & \\
\hline g bivehicle miles travelen & BILL MIIFSI & 1114.6 & 1143.2 & 1172,1 & 1194.11 & 1216.6 & 1235,1 \\
\hline 171 & KGROWTHI & 1.38 & 2.57 & 2,52 & 1.90 & 1.86 & 1.5? \\
\hline 181 & 1 & & & & & & \\
\hline 191SCRAPDAGE OF Alltis & Mill autosi & 11.349 & 10,529 & 10.256 & 10.334 & 10,148 & 10,219 \\
\hline 201 & KGHOWTHI & 2,29 & -7, 23 & -2.59 & 0.76 & -1.79 & 1,29 \\
\hline 211 & 1 & & & & & & \\
\hline 22IHEM AUTOS FLEET M.P.G. (EPA) & 1 & 20.72 & 21.27 & 21,85 & 22.44 & 22.94 & 23,30 \\
\hline 231 & \%GROWTHI & 2.57 & 2,68 & 2,69 & 2.72 & 2.21 & 1.56 \\
\hline 341 & 1 & & & & & & \\
\hline ? SINEM DIM'STIC EPA TEST M.P.Pi. & 1 & 20,26 & 20,86 & 21.49 & 22.16 & 22,72 & 23.08 \\
\hline Phl & \% (\%NOMTH) & 3.11 & 2.96 & 3.04 & 3.08 & 2.52 & 1.61 \\
\hline 371
341 & I & & & & & & \\
\hline 2H1 Mfw nomusitc Allfos N.P,G, & YGROWTHI & 20,04
2,94 & 20.60
2.84 & 21.20
2.92 & 21.83
2.93 & 22.35
2.41 & 22,68
1.49 \\
\hline 291
301 & YGROWTHI & 2,94 & 2,84 & 2.92 & 2.93 & 2.41 & 1.47 \\
\hline  & 1 & 27.27 & 27,72 & 28,01 & 28.44 & 28,7? & 29,23 \\
\hline SこI & \%GMUWTHI & 0.78 & 1.65 & 1,04 & 1.5? & 0.99 & 1.79 \\
\hline 331 & 1 & & & & & & \\
\hline 311 & 1 & & & & & & \\
\hline 3513HARE SIF NEW REGISIPATIUHSI & 1 & & & & & & \\
\hline 361 & 1 & & & & & & \\
\hline 371 SUACTMPACt & 1 & 0.189 & 0.186 & 0.183 & 0,171 & 0,172 & 0,176 \\
\hline 3 RI & \%GROVTHI & -5.97 & -1.49 & -1.73 & -3,11 & -2.70 & 2.08 \\
\hline 371 & 1 & & & & & & \\
\hline ant meract & 1 & \(0.21 ?\) & 0,210 & 0,209 & 0,208 & 0.206 & 0.205 \\
\hline 411 & \%GHOMTHI & 4.06 & -0,80 & -0.58 & -0,52 & - 0.78 & -0.59 \\
\hline 421 & 1 & & & & & & \\
\hline 431 MJD-SIZE & 1 & 0.227 & 0.226 & 0,226 & 0.227 & 0.226 & 0.229 \\
\hline a 41 & \%GROWTHI & 1,05 & -0.41 & -0.1? & 0.41 & -0, bA & 1.63 \\
\hline -4, & 1 & & & & & & \\
\hline Un) FULL-SIJE & 1 & 0.279 & 0.284 & 0.288 & 0.295 & 0.299 & 0,292 \\
\hline 4) & xGHSWTHI & 0,07 & 1.64 & 1.39 & 1.71 & 2.36 & -2,36 \\
\hline HRI & 1 & & & & & & \\
\hline 491 Lllxilliy & 1 & 0.043 & 0.094 & 0.075 & 0,096 & 0.097 & 0.098 \\
\hline inl &  & 1.23 & 1.09 & 0,83 & 0,95 & 1,09 & 1.03 \\
\hline
\end{tabular}
I．1Nr
1972
7.072
0.93
 플 \(\stackrel{\infty}{\circ}\) \(m \infty\)
\(\vdots=0\)
-0
\(=に\)
\(=\)
\(=\)
\(=\)
 \(0 m 00\)
0
\(=0\)

 \(\begin{array}{ccccc}-0 & \overline{0} & \text { no } & \text { N } & \text { M } \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\) \(: \begin{array}{ll}\infty c & 0 \\ 0 & 0 \\ n & 0 \\ n & n \\ n & 0\end{array}\) n
n
n
 \(M=\)
\(\approx=\)
\(\cong\)

 － 24,549
1.04 ～ 0 \(=0\)
응
\(=-2\) \(0 \times\)
0
\(=-\infty\) －
0
0
－
\(=\) \(\begin{array}{ll}n-\infty \\ \infty \\ \infty & 0 \\ \sim\end{array}\) \(m \sim\)
\(n\)
\(n\)
\(n\)
 \(\begin{array}{ll}\infty & m \\ 3 & 0 \\ n\end{array}\) 24.05 \(n=\)
\(n=0\)
\(0=\) \(\begin{array}{ll}0 N & 30 \\ \infty & 0 \\ 0 & 0\end{array}\) 0
\(0_{0}^{\circ}\)
0 No N \(\stackrel{\circ}{\circ}\) 123.271
 \begin{tabular}{l}
\(=0\) \\
\multirow{2}{0}{} \\
\(\simeq\)
\end{tabular} \(\infty=0\)
\(\sim\)
\(\sim\)
\(=0\) in
0
＝
\(=\)
\(=\) 00
\(-\infty\)
\(\approx 0^{\circ}\) \(\circ 00\)
\(-\infty\)
\(=0\)
\(=-0 n\) ～～ \(\infty\)
～
～

 0.282
-0.99 3


 23,98
1.53
 100
1.11 －－－－－－
120．a82 120.009 1．32 12.295
0.87 1.449
1.22 10.846
0.82 1249.3
1.15 \(\sim\)
\(\sim\)
0
0 N－
 \(\stackrel{\wedge}{\approx}=\)
\(\underset{\sim}{\circ}=\)
 MIt A1JT03I
XGHOVIII MILI AUTOSI
 XGROWTHI MILI AUTISI
\＆GKGMTHI


幺FROWTKI KGROWTHI
\％GROWTHI \％GROMTHI
\％GROWTHI －玉
苍
号
ier

 \％GOOMTHI


DOMESTIC NEW REGIS.

bivfnicle miles traveled
sogle so jovdduajsit

PSINFW DUHESTIC EPA TEST M．P．G．
？71
\(2 H 1\)
291
301
3id NEW FOHEIGN AUTOS M．P．G．


COMPACT
M10－312F
FMLL－51 2 E
Luxupy こここの
ミニ व巨 ここ ぶ ぶす。
TABLE 1.00 SURMARY

IABLE 1.00 SUMMARY
19992000
 \(-\infty\)
\(0=\)
\(\cdots\)
\(\cdots\)
 \(=2\)
\(\cdots 0\)
\(n 0\) -
0
0 0 -5
0
0
0 \(0-\)
00
0 -
0
\(m\)
0 \(=\)
0
\(=0\) \(\begin{array}{cc}n 0 & -\infty \\ n 0 & -0 \\ n=0 \\ n & -0\end{array}\) \(=\)
0
0 3536 H
\(.36 H\)
0.61 131.145 13.940 1.630
0.10 2.311
0.70 1394,6 0.71
13,130
1,20 26.06
0.56
26,17
0.67
25.39
0.57 jo
nin
no
\(n\)




 \％GROWTHI （aronti XGROWTHI
 － \(-1\)
XGROWTH
 \％Gront I KGFOWTHI ＊GRONITHI 1HIMOA！

\section*{I 1 E M}
DESIRED Siock UF AUTOS

11
21
31
11
GI
7 IHEW FEIFISTRATIONS OF AUIUS
HI

PGIMEW DOMESTIC EFA TEST M．P．G．
？R M NEW DUMESTIC AUTUS M．P，G．
NFW FOREIGN AUTOS M，P，G．
391
\(351 S H A R E\) OF NEW REGISTHATIONSI
361 321
321
331
301
3515

101 COMPACT
M1O－SIZE
FUtL－512F
Luxijay ～ー \(\stackrel{-}{9}\) ラ テ E
IARL．F 1.01 SHARES AY SITF CLABS
1980
0.199
0.01
0.191
3.19
0.232
0.01
0.286
-2.31
0.092
1.04
 \begin{tabular}{llll}
\(0 \therefore\) & 0 & 0 & 0 \\
\hdashline-0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{tabular} 0
0
0
0
0
\(\begin{array}{cccccc}0 & 0 & \infty & n & \infty & \cdots \\ 0 & \infty & m & \cdots & 0 & 0 \\ -0 & -\infty & -0 & -N & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\)
 \(\begin{array}{lll}0 & 0 & 0 \\ \infty & 0 & 0 \\ \infty & 0 & 0 \\ 0 & 0\end{array}\) 0
0
0
0
 0.200
-0.39 0,180
\(-2,77\) 0.230
-0.04 \(\begin{array}{ll}0 & \Rightarrow \\ 0 & 0 \\ 0 & \\ 0\end{array}\) \(0 m\)
\(0 m\)
00
0 \(\begin{array}{cc}0=0 & -\infty \\ 0 & 0 \\ 0 & 0\end{array}\) 0.235
-0.21 0.297
-2.86 \(0=\)
\(0=0\)
0 0,867
0.48 0.4800
0.0 0
0
0
0
0 0
0
0
0
0
 0.185 \(-4.41\) 0.230 \(\begin{array}{ll}3 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}\) \(\begin{array}{ll}0 & 1 n \\ 0 & 0 \\ 0 & 0\end{array}\) \(\operatorname{con}_{0}^{\infty}\) min 0.236
0.40 0,306
-4.31 \(\begin{array}{ll}0 & \infty \\ c & 0 \\ 0 & 0 \\ 0\end{array}\) 0.863
0.91 0
00
\(=0\)
0 0
0
0
0
0 0
0
\(\infty\)
0
0

0
0
0
0
\[
\begin{array}{ll}
\infty \text { un } & \text { un } \\
0 & =0 \\
-\infty & 0 \\
0 & 0
\end{array}
\]
\[
\begin{array}{rr}
0.818 & 0.856 \\
-2.91 & 4.57 \\
0.4694 & 0.11800 \\
-2.68 & 2.26 \\
0.9264 & 0.9300 \\
0.15 & 0.39 \\
0.8792 & 0.8800 \\
-0.33 & 0.09
\end{array}
\]





\[
\begin{aligned}
& 0.23 ? \\
& 14.71
\end{aligned}
\]
\[
\begin{array}{ll}
\infty & 0 \\
0 & 0 \\
0 & \\
0
\end{array}
\]
\[
\begin{aligned}
& \text { un } \\
& =\sim \\
& \sim
\end{aligned}
\]
\[
\begin{aligned}
& 8= \\
& 0=0 \\
& 0
\end{aligned}
\]
\[
\begin{gathered}
m_{0}^{0} \\
N_{0} \\
0
\end{gathered}
\]




xGROWTHI 1 ISN
ISNUIDVASIDJA MJN 20 Jaty Jils munul
\begin{tabular}{|c|c|c|c|c|c|}
\hline 301 & DOMESTIC & SHAHF & 0F & rotal． & 1 \\
\hline ant & & & & & gerivithi \\
\hline 411 & & & & & 1 \\
\hline 431 & Domestic & SHAHE & \({ }^{1} 1\) & SUACOMPACTS & 1 \\
\hline －31 & & & & & \％GROWIHI \\
\hline 441 & & & & & 1 \\
\hline 451 & norrstic & SHARE & הr & CIMAPACTS & 1 \\
\hline Unt & & & & & xGROVTHI \\
\hline 411 & & & & & 1 \\
\hline U81 & nu＇lictic & Shame & nf & Llixility & 1 \\
\hline
\end{tabular}
DUDLESTIC SHAHE OF LIXXIHY



381
301 301
001
\(\begin{array}{lll}4 & 1 & 1 \\ 4 & 2 & 1\end{array}\)
प4।
\[
\begin{aligned}
& 0.235 \\
& 04.76
\end{aligned}
\]
\[
\begin{aligned}
& 0.338 \\
& -5.27
\end{aligned}
\]
\[
\begin{array}{r}
0.087 \\
1.23
\end{array}
\]
戸えたの
\(\begin{array}{ll}1 & m \\ 0 & 0 \\ 0 & 0\end{array}\)
\(\begin{array}{ll}50 \\ 0 & 0 \\ 0 & 0\end{array}\)

\(\circ \mathrm{Om}\)
\(\mathrm{N}=0\)
00
0
0
0
0
 0.0
\(0050^{\circ} 0\)
\(00^{\circ} 0\)
\(008 i^{\circ} 0\)
\(12^{\circ} 0-\)
\(188^{\circ} 0\) 0.0
\(0088^{3} 0\) \(0^{\circ} 0\)
\[
\begin{aligned}
& \infty= \\
& 0-0 \\
& 0
\end{aligned}
\] \(\infty=0\)
\(0-0\)
\[
\begin{aligned}
& N= \\
& M=0 \\
& 0
\end{aligned}
\] \(n=\)
\(n\)
0
0 \(\begin{array}{ll}0 \\ 0 & 0 \\ 0 & \\ 0\end{array}\) \(\begin{array}{ll}1 & \infty \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\) 0,197
\(-2,15\) \(\qquad\) \(m i n\)
0
0
0
 1.19
 \(\cdots\) 0.884
0.28
0.4800
0.0
0.9300
0.0
0.8800
0.0 \(\begin{array}{ll}\infty 0 & 0 \\ \infty & 0 \\ 0 & 0 \\ 0 & 0\end{array}\) \(m-0\)
\(\mathrm{~N}_{0}\) \(=n\)
0
0 \(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\) 0.202
.1 .78
0.199
1.04
0.232
-0.30 30
\(n\)
0 \(\begin{array}{ll}N & = \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\) 0,882
0,33
0.4800
0.0
0.9300
0.0
0.8800
0.0
\[
\begin{aligned}
& \infty= \\
& \approx \dot{N} \\
& 0
\end{aligned}
\]

 \(\square\) － 0 －
\[
0
\]
\(\begin{array}{cccc}\quad=\infty & 0 & 0 \\ \infty & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\)
\[
4
\]
-

\(\begin{array}{ll}\infty \infty & \infty \\ 0 & 0 \\ 0 & 0\end{array}\) \(\begin{array}{lll}m=1 & n & n 0 \\ m=0 & 0 & 0 \\ 000 & 0 & 0\end{array}\)
\(\begin{array}{ll}00 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\) 0.9300
0.0 0
80
\(\infty\)
0
0
0.190
\(\Rightarrow\) 2
0
0 N＝ \(\begin{array}{ll}\text { 1n } 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}\) \(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}\) \(\begin{array}{ll}\infty \infty & n \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\) \(=\infty\)
\(\sim 0\)
-0 \(\begin{array}{lll}\cdots \infty & 0 & n \\ n & 0 & 0 \\ 0 & 0 & 0\end{array}\)
n
\[
\begin{array}{ll}
\text { NN } & 0 \\
\infty & 0 \\
00 & =0 \\
0 & 0
\end{array}
\] 0
80
0.0
0 0
0.
00
0.
0
 50 \(\mathfrak{n c o s}\) जN
NO
00
\(0-0\)
 0.876
0.63 0.4800
0.0 \(\circ\)
0
0
0
0 0,8800 0,0\(\therefore\)
\[
\text { L } 1
\]

\(0,2.09\)
0.54 \(n=\)
0
0
0 \(=0\)
\(n 0\)
0
0 0.275
1.94 00\(\begin{array}{ccccc}0 \cdots & 00 & 0 & \pi & \pi \\ n & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\)0,876
0,63
0.4800
0,00,9300
0,00.0
fable 1,01 shares by size class
1992
0.176
-0.13
0.199
-0.01
0.237
0.58
0.285
0.74
0.103
0.98 \(\begin{array}{cc}\sim= & \text { n } \\ -0 & 00 \\ 00 & 00\end{array}\) 0.232
0,37 \(m=0\)
\(n=0\)
\(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\)
0.879
-0.03
0
\(\infty 0\)
\(=0\)
0
80
00
00
\(0^{\circ} 0\)
\(000 \theta^{\circ} 0\)
\(\therefore\)
0.176
0.04
0.199
0.15
0.236
0.15
0.287
0.30
0.102
\(\approx 0\)
\(0-0\)

0.231
0.24

0.09 A
1.04
\(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\)
\(\begin{array}{ll}00 & 0 \\ 0 & 8 \\ 0 & \infty \\ 0 & 0\end{array}\)
\(0^{\circ} 0\)

0.183
.0 .98 \(n\)
\(n\)
0
0 0.230
0.25 0.285
-0.01
0,097
0,880
\(-0,13\) 0,4800
0,0
\(c\)
0
0
0
0 0
0
\(\infty\)
0
0
1987 1988 1989

0.185
-1.31 0,204
0.29 no
00
0.0 \(\begin{array}{ll}n n & 0 \\ \infty & 0 \\ 0 & 0 \\ 0 & 0-0 \\ 0\end{array}\) 0.881
-0.02 0,4800
0,0 0
00
00
0 0
\(\infty\)
\(\infty\)
0
0 0.177
.0 .09 0.198 0,234
0,26 0.291
-0.46 0.099
0.96 0.187
.1 .49
0.204
0.35
0.230
00.08
0.284
0.51
0.095
0.92
0.881
00.12
0.4800 \(\begin{array}{ll}0 & 0 \\ \pm 0 & 0 \\ \vdots 0 & 0 \\ 0 & 0\end{array}\) \(\begin{array}{ll}0 & 0 \\ 00 & 0 \\ 00 & 0 \\ 0 & 0\end{array}\)
0,177
00,60
 \(\underset{\sim}{\sim}\) M

0
0 \(\infty=\)
0
0
0 0.190
-1.74 0.203
0.47 07

0 0.283 0.283
0.78 \(==\)
0.0
0.0 0.882
00.05
0.4800
0.0
0.9300 0.8800 0.0 0,0
\[
1 \uparrow M
\]

1998
0.170
0.54
0.178
0.04
0.240
0.09
0.282
0.14
0.109
0.95
 \(\begin{array}{llll}\sim N & 0 & 0 & 0 \\ \infty & 0 & 0 & 0 \\ 00 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\)

 \(\begin{array}{llll}\sim 0 & 0 & 0 & 0 \\ \infty & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ & 0 & 0 & 0\end{array}\)

\begin{tabular}{ll}
\(\therefore\) & \multirow{2}{0}{} \\
\multirow{2}{0}{} & 0 \\
0 & 0 \\
-0 & 0
\end{tabular} \(n\)

0
0
 0 \(\begin{array}{lll}\text { DJ } & 0 & 0 \\ \infty & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\) 0.8800 0,0

\title{
응응 \\  \\ 0.174
-0.29 \(⿷ 匚\)
\(0-0\)
\(0-0\) 0
0
\(0-0\)
0
}

 0,8800
0.0 － \(\underset{0}{n}\) 0.175
-0.50
0.198
0.11 0.239
0.29 \(m\)
\(\infty\)
\(N\)
0
0
0 \(n\)
0
0
0
0 \begin{tabular}{l} 
을 \\
\hdashline-0 \\
00
\end{tabular} 0,204
\(-8,09\)
 0.281
-0.47 응 \(C_{0}^{0}\)
\(\infty\)
\(\infty\)
0
0 8
0
\(=0\)
0 \(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}\) 8
\(\infty\)
\(\infty\)
0
0 0.0 0,0 0.199
00.12 \(=0\)
00
0 \(=N\)
\(n\)
0
0
0 70
\(0-0\)
0
0 \(\begin{array}{ll}0 & \text { NN } \\ \infty & 0 \\ 0 & 0 \\ 0-0 & 0\end{array}\) \begin{tabular}{ll}
0 & \(=1\) \\
\(\infty\) & \(\overline{0}\) \\
\hdashline-0 & 0 \\
0 & 0 \\
0 & 0
\end{tabular} \(m \infty\)
\(\sim\)
\(\sim\)
\(\sim\)
0 0.282
-0.42 0.100
1.03 0.879
0.03 0
0
0
0
0
0 0.0
0.9300
0.0 0.8800
0,0


\author{
0.175
}

L．INE

TARLE 1.01 ghares fy size class


\(2,62 ?\)
1,69 No
\(M \vec{O}\)
0
\(=0\)
 \(622^{1} 22\) \(21^{\circ} 02\) \(\begin{array}{ll}m & \infty \\ \infty & 0 \\ 0 & N \\ \sim & n\end{array}\) \(m=\)
\(0=\) 9.652
1.13
 \(\begin{array}{ll}N O & n m \\ \sim O & 0 \\ \sim 0 & 0\end{array}\) O
～
ふ 31．187 \(\begin{array}{ll}\infty & 0 \\ -0 & 0 \\ 0 & 0\end{array}\) 21.632
4.28
19.719
2.25 24.959
0.54
30.721
-1.99 9.543
1.52

\author{
1434
0.19
} 2,104
-1.80 2,707
\(-4,21\) \(\operatorname{n} 0\)
\(=0\)
\(m=0\) un
0
0
0 \(\begin{array}{ll}A 0 & n 0 \\ \infty=0 & 0 \\ -N & 0\end{array}\) \(\begin{array}{ll}0 \text { N N N } \\ \text { N } & 0 \\ =N & 0 \\ \cdots & m\end{array}\)
 － \(0^{-m}\)
2.438
3.58
2.142
6.26
 ～M
\(\sim 0\)
\(\sim\) \(\circ\)
0
0
0
0 20,672
-1.38
18,968
.1 .80 23.678 10
\(0-0^{\circ}\)
0 \(\substack{\sim \\ 0 \\ 0 \\ 0}\) 19.397
8.25 18,633
4,22 \(M=\)
0

\(\cdots\)
\(\cdots\) 뭉
\(=-\) \(n=0\)
0
0 ～： 2.354
\(-2.1 ?\) 2.016
11.68 2.903
54.20 2.023
44,53 nn
on
－ 20.962
.6 .67
19.315
1.02 23.221

 17.918
10.10
17.878
5.50 \(n\)
0
0
\(n\)
\(n\) 31.930
.2 .32 0
\(\infty\)
\(\infty\)
\(\infty\)
\(=\) \(=\) 2.405
0.64 1，005 1.883
-21.91 1.400
\(-28,54\)
 \(\begin{array}{r}22.459 \\ 18.23 \\ 19.120 \\ 12.01 \\ 22.673 \\ \hline 2.00\end{array}\) \begin{tabular}{l} 
天 \\
\multirow{2}{n}{} \\
～
\end{tabular}
 32.695
-2.52
 4.16

MILL AUTOSI ミ

MILG AUTOSI XGROWTHI
MILL AUTOSI MILL AUROSI MILL AUTOSI
 MILL AUTOSI
XGROWTHI

MILL AUTOSI ミ MILG AlITOSI
\＆GROWTHI MILL AUTISS zGHOWTHI MILL AUTISI KGHOWTHI
MILL AUTOSI MILL AUTOSI
KGROWTHI MILL AUTOSI KGROWTH： MILL AUYTHI
KGROMTHI MILL AUTOSI
KGROWTHI
MJLL AUTOBI MILL AUYO3I
\％GOOWTHI I Guinv 11Iw KGRONTKI

\section*{SIRED SIOCKI}

\section*{compact \\ NID－SIZE \\ FULL SIZt}

\section*{LIJXURY}
subcompact

\section*{C．OMPACT}

M10－S12E．
FULL SIZE．
luxupy

SIJHCOMPACT
COMPACT
MICOSIZE
FUIL SIZE

bugar SO1

\(\begin{array}{ll}n & a 0 \\ -0 & =- \\ =0\end{array}\)
\(\begin{array}{ll}\infty 0 & 00 \\ =0 & = \\ = & m\end{array}\) \(\begin{array}{ll}00 & 0 \\ \exists 0 & 0 \\ n & n \\ n & n\end{array}\)
 \(\begin{array}{ll}n \infty & 0 \\ \sim \sim & 0 \\ =\sim & n \\ = & n\end{array}\) Bi
N
m
m M M
 \(\infty=\)
\(n\)
\(n\)
\(m\)
\(m\)

 \(\therefore\) \(m 0\)
\(n\)
\(\sim 0\)
0
\(n\)


 an
0
0
nim
an

 25801
 \(-\infty\)
\(\infty\)
0
0
0 0
\(n\)
\(n\)
\(n\)
\(n\) \(=0\)
00
0
0 \(\begin{array}{ll}n & n \\ n 0 & m \\ n & 0 \\ m & 0\end{array}\) \(\begin{array}{lll}n m & \cdots & n= \\ 00 & \infty & n= \\ m 0 & n & 0 \\ n & n & \text { ru }\end{array}\) \(0 \sim\)
\(0=\)
\(m\)
\(m\) \(n_{n}=\)
\(0^{-n}\)

\title{
2,229
\(-3,71\) \(85^{\circ} 20\)
\(805^{\circ} 2\)
} -
\(N\)
\(n\) M
\(=0\)
0 \(59^{\circ} 0^{\circ}\)
\(215^{\circ}\) 1.161
-1.20
 \(\stackrel{\infty}{n}\) \(=0\)
\(\therefore 0\)
0
0

웅 \(=\)
\(\cdots\)
\(\infty\)
 \(n=\)
\(\sim 0\)
\(\sim\) \(0 n\)
\(0 i n\)
\(0=0\)
\(n\)
 №.
\(\cdots\)
\(\sim\)
\(\sim\) 31.483 \(\infty\)
\(\sim\)
\(\sim\) mo
min
0 2.930
1.29 \(n n\)
\(n=3\)
in
\(n\) 25,790
1,70 30.135
0.90 10,066
 -
 -

 nio \(m m\)
\(x=m\)
0 0
0
\(n\)
\(n\)
\(n\)
\(n\)
\(n\) 00
00
\(n\) \(\infty\)
\(\infty\)
\(\infty\)
0
0
0 \(\infty\)
\(m_{0}\)
0 10,57

) 2910101




 \begin{tabular}{r}
0 \\
\hdashline \\
\(=1\) \\
\(:\)
\end{tabular}




2,378
4,01 00
5
\(n\)
\(n\)
\(n\) こ
\(m^{-m}\) 30
\(\mathrm{~s}_{5}^{\infty}\)
\(0-\)
\(\mathrm{m}^{--}\)



 \(m i n\)
\(0_{0}\)
0.0
\(n n^{-0}\) 11,962
1.69

\(\bar{N}\)
N
\(=0\)
N

 \(n\)
\(=\)
\(=\)
2.230
2.94 \(n=0\)
\(n\)
\(n\) \(\begin{array}{ll}0-0 & m \\ 0-n & m^{-0} \\ n^{-n}\end{array}\) Ni.
 22,729
00,48



2,167 2.515
0.74 2,842
1,73 3.554
-0.28 둥
 =o
\(\stackrel{\circ}{=}\)
in 28,067 No
in
in

 33.927
2.11
11.335
2.17 MJLL AUTOS!
MILL AUTOSI
MILGROWTHI isulnv 771w MILL AUTOSI
KGROWTHI
 XGROWTH: Mill autosi
sGRONTHI 를
MILL AUTOSI
XGROWTHI
MILL AUTOSI
KGROWTHI
MILL AUTOSI
KGROWTHI
MILL AUTOSI MILL AUTOSI
KGROWTHI
MIIL AUTOSI
KGROWTHI

MILL AUTOSI KGRUWITHI
MILL AUTOSI




?INEW RFGISTRATIONSI
\(? 1\)

IAIDESTRE STOCKI
desirfo stocki
31 SUHCOMPACT
compact
M10-SIZt
FULL SIZE
LIJXURY
compact
NIDESIZF

SSIYEAR-END ACTUAL STUCKSI

Pable I，OP NEW REGIGTRATIONS AND SIOCKS by SIIE CLASS
莒 26.566 \(\infty\)
\(\infty\)
0
0
0 \(\begin{array}{ll}\approx & \infty \\ 0 \\ 0 & 0 \\ 0 & 0 \\ & 0\end{array}\) 2 \(\infty\)
20
2
2 1991

 36,570
0.69
 \(\sim\)
\(\sim\)
\(\sim\)
\(\sim\)
\(\sim\) 00
\(0_{0}^{-0}\)
0 0 No
心．
in 0.0
\(0-0\)
\(0-0\) N
ご
こ 0 \(\approx\)
\[
m
\]
，
\[
\begin{aligned}
& \infty 00= \\
& \sim 0 \\
& \sim 0 \\
& n=0
\end{aligned}
\]
\[
88^{\circ} \text { I }
\] 3.778
1.59
1,496
2,03 \(n 2^{\circ} 0 \times\)
\(051^{\circ} \mathrm{Cz}\) 25.465
0.68 30.803
0.93 36,318
0.81 13,800
1.76
 ～ ～ 2.776 3,254
0.73

 30，518 \begin{tabular}{ll}
0 & \multirow{2}{0}{} \\
0 & 0 \\
\(0-0\) \\
0 & 0
\end{tabular} 13.561 ñ
0
\(n=0\) ～
0
0
0
0 0
0
0
0

 \(n\)
\(n\)
\(n\)
\(n\)
\(n\)
\(n\) ت 2.434 2.434
0.34 2.762
0.95 3,230
1,20 3,707

 30.226 35.903
0.47 Mr \(\sigma=0\)
\(\sim\)
\(\sim\)
\(\sim\) 25．849 29.609 0
-
N
N
No
 2,426 2,426
0.43
2.736
0.72 0.12 3.192
1.06 3.670
0.72
1.415
1.86

 22.696
0.39
25.733
0.65
29.291
1.10 50
00
00 12.612 1993 1994 2.03 1.439
0.19 0.49

 ，
N －－．．．．．．．．．．．．

\footnotetext{
MILL AUPOSI
MIL NUTASI
KGROMTHI
}
MILL aurnsi MIIL
XGOWTHI MILL AUTOSI
XGONTHI MILL AUTOSI＇ MILL AHTOS！ MILL AHTMSI
\％GROWTHI 1
MILL autosi isusne 7 ins MILL NUTOSI MILL AUTOSI XGHOMFH！ MJLL nutasi MILL aurosí MILL nurosi
zGOUVIFI MJLL AUTOSI MILL autosí MILL AUTOSI
KGHOWTHI MILL aurnsi


 MILL AUTUSI
XGRONTHI
 31 SUपCกMPACT 41 \(\begin{array}{ll}61 \\ 71 & \text { COMPACT } \\ 181 & \end{array}\) \(\begin{array}{rl}91 & 410-512 E \\ 101 & \\ 111 & \\ 121 & \text { FULL SIZE } \\ 131 & \\ 141 & \\ 151 & \text { LIYYIRY }\end{array}\)
LIIXIJHY
IxJULS UJHISJUIE
SIJ日CIMPACT
COMPACT
M10－s17t
FILL SIZE


1，0？HEN REGISTRATINNS AND STUCKS HY 3ILE CLASS





\[
\begin{aligned}
& \bar{\sigma} \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \\
&
\end{aligned}
\]
\[
\begin{aligned}
& \text { en } \\
& \text { m } \\
& \text { m }
\end{aligned}
\] \begin{tabular}{c}
\(\square\) \\
\hdashline \\
0 \\
0 \\
0 \\
0
\end{tabular}
 \begin{tabular}{l} 
ミO \\
ミ \\
\hdashline- \\
\(=-\)
\end{tabular}

```

MILL AUTUSI

```
\%GROWTHI
MILL AUTOSI
Isoing itis

Isoinv 711m
HIIL AUROWI
KGROWI
MILL AUYCBI
isoinv 77Iw

定
MILL KGROWTHI
MILL AUTOSI
KGROWTHI
MJLL. AUTOSI
MILL. AUTOSI
KGFOWTHI


MILL AUTOS
MILL AUTOSI
XGROWTHI
MILL AUTOSI

                                    MILL AUTOSI
XGROINTHI


    SUBCOMPACT
11 N
21
31
\(\begin{array}{ll}91 & M I D-312 E \\ 01 & \\ 11 & \\ 21 & \text { FILL } 312 E \\ 31 & \\ 41 & \\ 51 & \text { LUXIIKY } \\ 61 & \\ 11 & \\ \text { BIDESIREA STOCK: } \\ 91\end{array}\)
SIJHCOMPACT
COMPACT
LUXURY
1 Jvathotans
                                    Luxhry
TABIE 1,03 CAPITALIZED COSTS PER MILE
\(\begin{array}{lll}0 & 00 & 0 \\ \infty & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 00\end{array}\)
\begin{tabular}{l}
\(\approx\) \\
\(\approx\) \\
\hdashline 0
\end{tabular} \(\begin{array}{cc}\approx & \text { J．} \\ & 0 \\ 0 & 0\end{array}\) min
ñ
＝ -0
00
\(0-0\) mN
\(\infty \infty\)
\(\infty=0\)
\(0-60\)
 \(\begin{array}{cc}\text { En } \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\) n
n
0
0 no
on
－in Nin 0
0
0
0
0 \(S S S^{\circ} S\)
OSS \(\underset{0}{20}\)


0161
0.247
6.24
0.154

3n
\(n\)
0
0
0
0
0.193
6.57
\(\approx 0\)
\(\approx=0\)
\(\underset{0}{-5}\)
N 50
00
0 in
0
0
0 0,250
6,21
0,216
1,40
0,194
6,41 0
0
0 \(\stackrel{\infty}{0}\) 0.254
6.91 89
-5
0 \(\stackrel{\square}{3}\)
                            0.154
1.076
                    - \(\infty\)
0
0
0
0
0 N \(\underset{\sim}{n}\) \(\underset{\sim}{\infty}\) 0,236
6,78 -0
0
0
0 \(2 \pi\)
\(0-0\)
0 \(\circ 0\)
-0
00 0,206
6,62 0.237 0 오
00
\(0-0\)
 0.206
5.67
\(0.15 ?\) \(0.13 ?\)
0.545 0.161
5.17 50
\(0-5\)
0 \(\infty=\)
0
0
0
\(=\) 0,226
4,16 훙
0
0
0 0.308
4.95
 0.218
5.88
0.152 0.170
5.70
0.195
5.83
0.219
5.57
0.237 n＝
0,221
 \(=0\)
\(=0\)
00 0
0
0
0
0 Mo \(n\)


0
0 5－
0.175
0.179
0.152
0.598 0.152
7,81 0.175
8,93 0,198
10,06 0,217 0,281
11,40

0,196
8,96
 \(n=0\)
\(=-2\) \(\pi\)
0
0 0.174
8.96 \(0=0\)
\(0 . \infty\)
\(0 . \infty\) N 0,318
11,60


1972 s 1 \％Kinowth
 LEI
xGRONTHI SMMILE！至 に亲 S／MILE！
 s／mILI！ S／MILE
XGR（IWTHI XGROWITHI 1

S／MILFI
XGROWTHI xGRONTI SMMLFI
XGHOWTHI ミーム XGROIVTHI s／MILEI \％GHOWTHI云
 さ高 シ ェ云


TOTAL OOMESTIC

TOTAL FURFIGN DOMESTIC SUBCOMPACT

FUREIGN SURCDMPACT
OUNSTIC COMPACT
FUREIGH COMPACT
DJMESIIC LIJXUHY
FTREIGN LJXUIHY戸えニ天ニニえこう

IIAVG MOMINAL CAP，COST PER MILE
21
31
aIAVG REAL CAV，CISST PER MILE
51
OI
TICAPITALIZED COST MER MILE BY SI － 91
91
101
\(\begin{array}{ll}121 \\ 121 & \text { compacts } \\ 121 & \end{array}\)
MID－SILE
HULL SIZE
LUXUHY
にえニ
1980
0.538
4.28
0.157 \(\begin{array}{lll}0 & 0 \\ \vdots & 0 & 0 \\ 0 & 0 & 0\end{array}\) min
\(0=\) \(\pm n\)
\(0 \sim\)
0
\(=n\)
\(=0\)
\(=0\) \(\begin{array}{llll}m j n & \infty 0 & 00 & 0 \\ j & 0 & 0 \\ \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\) 0
0
0
0 \(5 m\)
0
0 \(0 n\)
0
0 \(0^{\circ}\)
\(\mathbb{E}_{5}^{5}\)
0
0 \(: \begin{gathered}n \\ 0 \\ 0 \\ 0\end{gathered}\)
 \(\underset{0}{\approx}\) 0.7
00
0
0 \(n 0\)
00
0 \begin{tabular}{ll}
\multirow{2}{*}{} & 0. \\
0 & 0 \\
0 & 0
\end{tabular} \(\underset{0}{\infty} \underset{\sim}{\infty}\) 0,256
4,54
 0.339
4.46
 コに
N
0
0 \(\stackrel{\sim}{\sim}\)

\(\qquad\) \(:\) \(:\)\begin{tabular}{ll}
\(\sim\) \\
\hdashline & \multirow{3}{c}{} \\
0 & 0 \\
0
\end{tabular} 00
 을쿵 \(50^{\circ} 6\)
\(9 \Sigma \Sigma^{\circ} 0\) mo
\(\begin{array}{ll}50 & 0 \\ m & n \\ 0 & 0 \\ 0 & 0\end{array}\) Fin
\(0_{0}^{0}\) ～～ \(n \mathrm{~m}\)

0 \(n=0\)
0
0
0 \(n\)
\(n=0\)
0
0


                \(n 0\)
\(n 0\)
00
        \(0 \sim n\)
\(0=0\)
0
0
                                \(\begin{array}{cc}n \sim \\ N & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\)

                                品
        4.90
        ت
                            0,264
4.81
                            0.311
4.81
                            ,40 0.506
4.90
 \(=\infty\)
\(=-\)
0 00
\(0-3\)
0
en

                                \(\infty \quad 0\)
0
0
0
0
0
                                Mn
                                \(8=\)
\(0=0\)
                                0.289
4.57
0.256
5.04
0.235
4.72
0.223
4.77
0.252
4.65
0.297
4.81
0.389
4.04
0.482
4.92
                                0.289
4.57
0.256
5.04
0.235
4.72
0.223
4.77
0.252
4.65
0.297
4.81
0.389
4.04
0.482
4.92
                                0.289
4.57
0.256
5.04
0.235
4.72
0.223
4.77
0.252
4.65
0.297
4.81
0.389
4.04
0.482
4.92
                                0.289
4.57
0.256
5.04
0.235
4.72
0.223
4.77
0.252
4.65
0.297
4.81
0.389
4.04
0.482
4.92
                                0.289
4.57
0.256
5.04
0.235
4.72
0.223
4.77
0.252
4.65
0.297
4.81
0.389
4.04
0.482
4.92
                                0.289
4.57
0.256
5.04
0.235
4.72
0.223
4.77
0.252
4.65
0.297
4.81
0.389
4.04
0.482
4.92
0.285
4.37
0.135
0.161


                            \(\begin{array}{cc}0 \\ 0 & -\Omega \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\)
\[
\begin{array}{r}
\text { S/MILEI } \\
\text { XGROWTHI }
\end{array}
\]
XGRUWIHI
\[
\begin{array}{r}
\text { S/MILEI } \\
\text { XGRUWIHI }
\end{array}
\]
1983
                                0,309
4,34
    1982 1983
1981
        0.215
4.70
0.155
0.334
                                0.334
0.214
4.95

                            0,276
4.65
0.244
5.96
0.215
4.71
                                    0.213
5.17
0.241
                                    0.241
4.43
                                    0,283
5,06
                                    중
\(=0\)
0
                                    0,459
5,09
    1 ・ー=

                                    1 ＊míl \＄／MILEI
                        s/MIIE!
a
IABL.F
                                0.289
4.57
0.256
5.04
0.235
4.72
0.223
4.77
0.252
4.65
0.297
4.81
0.389
4.04
0.482
4.924.\(\begin{array}{cc}M_{0} 0 & F 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\)5,09
                                0.267
4.81
                . 1 f1
                            -
                        \(-\)
                            \(0^{-7} 0^{-3} 0^{-7}\)
                                    \(H I\)
I
\(H\)
H
                                    KGHOWTHI
S/MILEI

 G／MILFI
\％GRUWTHI
 \(\square\)
TUIAL FORFIGM 3si DOMESTIC SUBCOMPACT
F OHE．IGN SIJRCOMPACT
DOMESTIC COMPACT
FDREIGN COMPACT
DOMESTIC LUXUIFY
F OAE IGN LIJXURY
\(111 A\)
21
31
1111
51
61
710
81
91

            \$/MILEI
        XGROWTHI
                        S/MILEI
XGROWTHI
                        Silapitalized cosi per mile oy sizet
ai

    - HAVG NOMINAL CAP, COST PERMILE

            \%GRONTHI
\[
\stackrel{-}{\stackrel{-}{\Sigma}}
\]
\[
\underset{\sim}{-}
\]
I．INE
I I E M
            31/avg real cap. cosi per mile
        301
                    301
311
311
        311
331
331
3
        351
341
351
361
                                361

                                    \(\begin{array}{ll}391 & \text { DOMESTIC COMPACT } \\ 401 & \\ 411 & \\ 421 & \text { FOHEIGN COMPACT } \\ 431 & \end{array}\)
                                    DUMESTIC LUXUIFY
                                    F TAKIJN LUXUAV
                                    431
441
451
                                    191
461
411
410
                                    (a)
\[
\begin{array}{r}
\text { XGROWTHI } \\
\text { S/MILEI }
\end{array}
\]
\[
\begin{array}{r}
\text { \$/MILEI } \\
\text { XCHOWTHI }
\end{array}
\]
\[
\begin{array}{r}
\text { GCMILEI } \\
\text { KGOOTHI }
\end{array}
\]
\[
\begin{array}{r}
\text { S/MILEI } \\
\text { XGHOWTHI } \\
\hline
\end{array}
\]


系: 크N

 \(2 \pi\)
0
0
0 \(=\)
\(=\)
\(=\)
\(=\) \(\underset{\sim}{n}=0\)
0
0
0

 n
0
0
0
0 \(n=\)
\(0=\)
\(0=\)





 \(\begin{array}{ll}00 & -0 \\ 0 & 0 \\ 0-m & 0 \\ 0 & 0\end{array}\)
 -
\[
\begin{aligned}
& \infty \\
& \infty \\
& 0 \\
& \infty
\end{aligned}
\]
\[
\begin{array}{r}
0.467 \\
3.89
\end{array}
\]
\[
\begin{array}{r}
0,464 \\
3,84
\end{array}
\]
\[
1995
\]
\[
=-\infty
\]
\[
\begin{aligned}
& 0.166 \\
& 0.61 ?
\end{aligned}
\]
\[
\begin{array}{r}
0,482 \\
3,86
\end{array}
\]
\[
\begin{array}{r}
0,646 \\
3,81
\end{array}
\] 0,525
3,83
0,670
3,64 0,888
4,14

\[

\]
\[
\begin{aligned}
& 0 m \\
& i n \\
& 0
\end{aligned}
\]
\[
\begin{aligned}
& 0 \cdot \bar{\sigma} \\
& \underset{=}{0}=m \\
& 0
\end{aligned}
\]
\[
\begin{aligned}
& 0 \infty \\
& 0-\infty \\
& 0=-m \\
& 0
\end{aligned}
\]
\[
\begin{aligned}
& \text { ñ } \\
& 0=0 \\
& 0
\end{aligned}
\]
\[
\begin{aligned}
& \text { nn } \\
& =0 \\
& -0
\end{aligned}
\]
\[
\begin{aligned}
& 5 m \\
& =0 \\
& 0=0 \\
& 0=0
\end{aligned}
\]
\[
\begin{aligned}
& \pm 0 \\
& =\infty \\
& 0 \\
& 0
\end{aligned}
\]
\[
\begin{aligned}
& m N \\
& N \\
& c m \\
& 0
\end{aligned}
\]
\[
=\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\]
\[
\begin{aligned}
& \infty 0 \\
& 0 \\
& 0 \\
& 0-m
\end{aligned}
\]
\[
\begin{aligned}
& 00 \\
& 0 \\
& 0 \\
& 0-m \\
& 0
\end{aligned}
\]
IIAVG NOMINAL CAF, COST PEH MILE S/MILEI
IIAVG NOMINAL CAP. COST PER MILE XGROWIHI
II
II

* 1
TICAPITALIZED COST FER MILE IGY SIZE.I
\$/NILEI
OGOHTHI
QGRUWTHI
S/MIL.E.
\&GHOWTHI

-
\$/MILE:
GGOWTHI
S/NILEI
KGHUWTHI



FULL SI \(\angle \mathrm{F}\)
\[
\begin{array}{r}
0.786 \\
4.15
\end{array}
\]
 G/MILEI
XGROWTHI \$/MILEI
QGRUVTHI S/MILFI
\%GROWTHI

?I SUHCOMPACIS
121
31
121
MID-SILE
LIIXIJRY \(\begin{array}{lll}311536150 & 18101 & 182 \\ 142 \\ 142\end{array}\)
 \(\begin{array}{lll}311536150 & 18101 & 182 \\ 142 \\ 142\end{array}\) TOTAL FOREIGN TAL FOREIGN
OOMESTIC SUBCOMPACT
FDHEIGN SUBCOMPACT
DOHESTIC ROMPACT
Foreign compact
DOAESTIC LUXIJRY
FOHEIGN LHYIJRY
FDHEIGN SUACOMPACT
DOHESIIC COMPACT
FOREIGN COMPACT
DOMESTIC LUXIJRY
FOHEIGN LIXIJHY UH1 491 IOHFIGN LIXIUY
\[
\begin{array}{r}
0,454 \\
3,89 \\
0,410 \\
3,94 \\
0,357 \\
3.90 \\
0,350 \\
3,09
\end{array}
\]
\[
\begin{array}{r}
0,469 \\
3,84
\end{array}
\]
\[
\begin{array}{r}
0,500 \\
3,82
\end{array}
\]
\[
\begin{array}{r}
0,487 \\
3,84
\end{array}
\]
\[
\begin{array}{r}
0,486 \\
3,90
\end{array}
\]
-


- - -
TABLE 1.03 CAPItALIZED COSTS PER MILE

1780
1.305
0.10
1.305
-1.14 \(\begin{array}{lll}0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\) 5
0
0
0 10
0.0
\(0-0\) 22.81
5.49 ご 1,304
0.21
1,320 20
\(\because 0\)
-0 E
i
i 0.8 ? 10,193 0.11 N
0.
0
0
0. 0,0995
17.22 0.039
0.06 n \(\begin{array}{ll}\infty & 0 \\ = & 0 \\ =0\end{array}\) 5,690
\(-0,39\)

4\&6I
    \(:\)
    1.301
                1,330
1,02

                \begin{tabular}{l} 
ㅍ \\
\hdashline- \\
0
\end{tabular}
                                \(\infty\)
\(\cong\)
\(=0\)
0
                                0
\(=0\)
0
0
0
0
                                0,032
2,76

                                \(\stackrel{N}{N}\)
AUIO MIODEL. FORECAST \(1975-2000\)


AIITO MODEL FURECASI 1975-? 2000
1992
1.327
0.10 \(\begin{array}{ll}\infty=0 \\ 0=0 & -0 \\ -1 & 0\end{array}\) \(\begin{array}{ll}n & =0 \\ 00 & 0 \\ 100 & 0 \\ 0 & 0\end{array}\) 0.1002
0.25 11,846 \(\cdots\) \(\stackrel{0}{\sim}\) 5,481
\(-0,35\) \(-0.35\) 2100
\(925^{\prime} 1\) 00
00
\(=0\)
-0 \(n\)
\(m\)
\(\infty\)
\(\infty\)
\(\infty\) 0.477
0.17 \(n=1\)
0
0 \(\begin{array}{ll}00 & m \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\) nm 5,500
\(-0,38\) \(\begin{array}{lll}\sim 0 & 0= & 0 \\ N 0 & 0 & 0 \\ \sim 0 & -0 & -0\end{array}\) \begin{tabular}{l}
8 \\
\hdashline-0 \\
-0
\end{tabular} 00
00
0
0 \(\begin{array}{ll}0 & m \sim \\ 0 & 0 \\ 0 & =1 \\ 0 & =\end{array}\) 34.86 5.05 5,521
\(-0,23\)
1661 \(i\) 1 0
0
0
0
0
TARLE \(\quad 1.011\) MISCELI.ANEOUS

\section*{1789} 1,325
 \(\because=\)
\(=0\)
\(=0\)
0 \(\infty=\)
0
\(0=\)
0 \(0 \infty\)
\(0=\)
\(0=\) \(\stackrel{\circ}{\sim} \underset{\sim}{\sim}\) \(\infty=0\)
\(m i n\)
\(m i n\) 5,534
0.25
1988
1.326
0.04 1,320 \(0=0\)
\(\sim\)
\(\sim 0\)
-0 10,447 0.1043
0.55 \(0=0\)
0
0
0
0 00
\(=\)
\(=\) 0
\(i n\)
0
0 5,520
0,71
1.326
1.326
0.18
1,322 13,749
-0.07 10.472 0.1037
-0.76 0.0905 \(\begin{array}{ll}\approx & n \\ 0 & 0 \\ 0 & 0\end{array}\) \begin{tabular}{ll}
\multirow{2}{*}{\(=0\)} & 0 \\
0 & 0 \\
0 & 0
\end{tabular} \(\infty=\)
\(=0\)
\(\min ^{-0}\) \(\sim\)
-0
-0 : AUTOSI
xGRUWTHI
AIJTOSI AUTIS!
KEROWTH! THOU MIL.ESI THUU MILESI IH1HOHS\%
IS.37IW NOHL IJIRATIO-NEW REGIS. TO BEGIN. STOCK RATIOI 141
141
1 ZGROWTHI IGIRATIO-SCRAPPAGE TO RFGIN, STDCK RATIII IHJMOQ4x 1/1
 1 IH14049x 10 2IFAYILIES WITH INCTME OVER \(\$ 15,000\) KGRUWTHI
 \(251 A V G\) ACE IF AUTO STOCK
261
AlITO MUDEL FORECAST 1975. 2000


AHIU MUDFL FORECAS1 \(1775=2000\)

TAHLF 1.05 MILES FER GALLIIN

1786
15.97
 20.45
1.54
17.23
1.36 \(=-\infty\)
\(0-\)
no
y
n \(\begin{array}{ll}m i n & 0 n \\ 0= & 0\end{array}\) un
\(0=\)
\(0=\) \(n 0\)
\(n=0\)
\(n-\infty\) \(\begin{array}{ll}0 & n \\ n & n \\ 0 & 0 \\ n & -\end{array}\) \(n=\infty \quad n\)
\(n=0\) \(1 \infty\)
0
0 1705令
 0
0
0

 \(m m\)
00
\(=m\) \(m\)
\(=\)
\(=\) 17.43
1.43
TARLE 1.05 MILFS PER GALLDN
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{LINE 1 TEM} & 1987 & 1988 & 1989 & 1990 & 1971 & 1992 \\
\hline 110 & frall flett & 1 MILES PER GA & LLON - WFFA I & 16.38 & 16.78 & 17.15 & 17.52 & 17.88 & 18.20 \\
\hline 21 & & & \%GROWTHI & 2.53 & 2.44 & 2.25 & 2.14 & 2,04 & 1.78 \\
\hline 31 & & & 1 & & & & & & \\
\hline 41 H & w Allio mite & Es Pfr fallin & (v/EFA) 1 & & & & & & \\
\hline 51 & & & I & & & & & & \\
\hline 61 & IDTAL & & 1 & 18.48 & 18.76 & 19.02 & 19.31 & 19.43 & 17.55 \\
\hline 11 & & & XGROWTHI & 1.36 & 1.52 & 1.39 & 1.50 & 0.64 & 0,62 \\
\hline A1 & & & & & & & & & \\
\hline 91 & SURCUMPAC & & 1 & 25.13 & 25.56 & 25,89 & 26.36 & 2b, 52 & 26.69 \\
\hline 101 & & & zGROMTHI & 1,13 & 1.70 & 1,29 & 1,81 & 0,64 & 0,63 \\
\hline 111 & & & 1 & & & & & & \\
\hline 121 & COMPACT & &  & 20.77 & 21.10 & 21,43 & 21.75 & 21.89 & 22.02 \\
\hline 131 & & & KGROVITHI & 1.55 & 1.61 & 1.57 & 1,50 & 0,62 & 0.61 \\
\hline 141 & & & 1 & & & & & & \\
\hline 151 & N11)-512\% & & 1 & 17.46 & 17.71 & 17.95 & 18.20 & 18.31 & 18,4? \\
\hline [171 & & & XGROWTHI & 1.37 & 1.43 & 1.38 & 1.38 & 0.61 & 0,60 \\
\hline 171 & & & 1 & & & & & & \\
\hline 1 HI & FIJL St7e & & 1 & 16,36 & 16,58 & 16.80 & 17.02 & 17.13 & 17.23 \\
\hline 191 & & & \%GRUwithi & 1.31 & 1.38 & 1,32 & 1,33 & 0.60 & 0,60 \\
\hline 201 & & & 1 & & & & & & \\
\hline 211 & LIJXURY & & 1 & 15.61 & 15.81 & & & 16.30 & 16,40 \\
\hline 221 & & & XGROWTHI & 1.27 & 1.26 & 1,27 & 1.21 & 0.60 & 0,60 \\
\hline 231 & & & 1 & & & & & & \\
\hline 2010 & W MuTh M, p. & . Fi, Ar fijrioom & (VEFA) 1 & & & & & & \\
\hline 231 & & & I & & & & & & \\
\hline 231 & TOTAL DIMAF: & STlC & 1 & 17.92 & 18.18 & 18.44 & 18.72 & 18,83 & 18.95 \\
\hline 211 & & & *GROWTHI & 1,38 & 1.48 & 1.44 & 1.48 & 0,62 & 0.62 \\
\hline 281 & & & 1 & & & & & & \\
\hline 271 & TOTAI. FOREI & IGN & 1 & 24.15 & 24.53 & 24.74 & 25.08 & 25,24 & 25,40 \\
\hline 301 & & & KGRONTHI & 1.04 & 1.57 & 0,85 & 1,37 & 0.64 & 0,62 \\
\hline 311 & & & , & & & & & & \\
\hline 321 & OnMEstic & SIJRCIMPACT & * 50 (1) \({ }^{1}\) & 24.90 & 25,34 & 25.85 & 26.38
2.05 & 26,54
0.62 & 26,71
0.61 \\
\hline 331 & & & XGROMTHI & 1.42 & 1.76 & 2.01 & 2.05 & 0.62 & 0.61 \\
\hline 301
351 & FIREIGN S & SHACOMPACT & 1 & 25,35 & 25.76 & 25.92 & 26.34 & 26.51 & 26,68 \\
\hline 3nl & Fratar & Sluctor & \%rrumill & 0,86 & 1.64 & 0,62 & 1.60 & 0.66 & 0.65 \\
\hline 371 & & & I & & & & & & \\
\hline 341 & nn:Psstic & compact & 1 & 20.60 & 20,93 & 21.25 & 21.58 & 21.71 & 21.85 \\
\hline 301 & & & \%FROMTHI & 1.53 & 1.59 & 1.55 & 1.56 & 0.62 & 0.61 \\
\hline 401 & & & 1 & & & & & & \\
\hline 411 & FOMEIGM & COMPACt & - 20 H0wil & 23.28 & 23.73 & 24.18 & 24.32 & 24.48 & 24.64
0.65 \\
\hline 431 & & & 'KGRIJWTHI & 1,86 & 1.93 & 1.90 & 0.61 & 0,65 & 0.65 \\
\hline 431
441 & & & 1 & & & & & & \\
\hline प41 & Duntsilc & luxumer & 1 & 15,30 & 15.50 & 15.70 & 15.90 & 15.99 & 16.07 \\
\hline 4*1 & & & \%GROWIHI & 1.25 & 1.31 & 1.25 & 1.26 & 0.60 & 0.59 \\
\hline 161
411 & & & 1 & & & & & & \\
\hline ¢11
481 & FUHEIGN & Lilujuy & रGRTM1H1 & 18,33 & 18.48
0.83 & 18,75
1,44 & 18.89
0.76 & 19.01
0.65 & 19.13
0.64 \\
\hline 481 & & & रGROM|H| & 1.43 & 0.83 & 1.44 & 0,76 & 0.65 & 0.64 \\
\hline
\end{tabular}
\[
\begin{array}{lll}
0 a & N \min & \cdots \infty \\
n & n & n \\
00 & n & n 0
\end{array}
\]
\[
\begin{aligned}
& 0000 \\
& \text { in } \\
& \text { oin io } \\
& 00
\end{aligned}
\]
\[
\begin{aligned}
& \left\{9^{\circ} 0\right. \\
& 0 L^{\circ} \angle Z
\end{aligned}
\]
\[
\begin{aligned}
& 29^{\circ} 0 \\
& 01.61
\end{aligned}
\]
\[
\begin{aligned}
& 80 \\
& 00 \\
& -0 \\
& 0
\end{aligned}
\]
\[
\begin{aligned}
& M 0 \\
& N 0 \\
& N 0
\end{aligned}
\]
\[
\begin{aligned}
& 0 \times \\
& 0 \\
& n \\
& n \\
& n
\end{aligned}
\]
\[
\begin{gathered}
00 \\
00 \\
\text { n } 0 \\
n
\end{gathered}
\]
\[
\underset{\sim}{\sim} 0
\]
\[
\begin{aligned}
& 00 \\
& n 0 \\
& n \\
& n
\end{aligned}
\]
\[
\begin{aligned}
& \bar{n}=0 \\
& n \\
& n \\
& n
\end{aligned}
\]
\[
\begin{gathered}
5 n \\
\square 0 \\
n \\
n \\
n
\end{gathered}
\]
\[
\begin{aligned}
& \text { min } \\
& 00 \\
& 00
\end{aligned}
\]
\[
\begin{aligned}
& n=0 \\
& n 0 \\
& n \\
& n
\end{aligned}
\]
\[
\begin{aligned}
& 0.0 \\
& 0-0 \\
& 00
\end{aligned}
\]
\[
\begin{array}{r}
25.11 \\
0.63
\end{array}
\]
\[
\begin{array}{r}
19,50 \\
0,62
\end{array}
\]
\[
\begin{array}{r}
19,75 \\
0,61
\end{array}
\]
\[
\begin{array}{r}
16,67 \\
0,62
\end{array}
\]
\[
\begin{array}{lll}
=0 & j 0 \\
0 & n & n \\
0 & 0 & n
\end{array}
\]
\[
\begin{array}{llll}
\infty n & =1 n & n o & \text { in } \\
0 n & -1! & n & n 0 \\
00 & 00 & n o & n o
\end{array}
\]
\[
\begin{aligned}
& \infty \\
& 0 \\
& 00
\end{aligned}
\]
\[
\cdots 0
\]
\[
\begin{aligned}
& \operatorname{mos} \\
& \infty 0 \\
& \infty
\end{aligned}
\]
\[
\begin{aligned}
& =0 \\
& 0 \\
& =0
\end{aligned}
\]
\[
\begin{array}{ll}
\infty & 0 \\
\infty & 0 \\
0 & 0 \\
0 & 0
\end{array}
\]
\[
\begin{aligned}
& n=0 \\
& \sim 0 \\
& \sim 0
\end{aligned}
\]
\[
\begin{aligned}
& \infty \infty \\
& n 0 \\
& n \\
& n
\end{aligned}
\]
\[
\begin{aligned}
& m=0 \\
& 0=0 \\
& 00
\end{aligned}
\]
\[
\begin{aligned}
& =0 \quad 0 n \\
& =0 \quad \therefore 0 \\
& =0 \quad N 0
\end{aligned}
\]
\[
\begin{array}{llll}
n 0 & n \infty & m \infty & 0 \infty \\
=0 & n & n & 0 \\
n 0 & 0 & m 0 & 0 \infty \\
n & \infty & 0
\end{array}
\]
\[
\begin{array}{llll}
n i & =0 & 00 & -m \\
\cdots 0 & n 0 & -\infty \\
\cdots 0 & n 0 & n 0
\end{array}
\]
\[
\begin{aligned}
& =0 \\
& n \\
& n \\
& n \\
& n
\end{aligned}
\]
\[
\begin{aligned}
& m \infty \\
& 20 \\
& \therefore 0
\end{aligned}
\]
\(\begin{array}{ll}\leq i n & 0 \\ 0 & 00 \\ 00 & 00 \\ 0 & 00\end{array}\)27,02
0,64
22.11
0,60\(\begin{array}{ll}00 & n \\ 000 & 0 \\ 0000 \\ n 000\end{array}\)19,38
0.63
1993

19.64
0.56
26.86
0.63 22.16
0.61

 \(\begin{array}{ll}00 & 00 \\ 00 & 0 \\ 00 & 0\end{array}\) 19.25
0.63 18.4 A
1.55
19.64

TABLE 1.05 MILES PER GALLON
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{LIMt 1 ¢f M} & 1779 & ? 000 \\
\hline \multicolumn{2}{|l|}{fliverall fleget} & \(\boldsymbol{T}\) MILES PFR GAL & L.I.JN = WEFA 1 & 19.61 & 19.741 \\
\hline 21 & & & \%GRDWTHI & 0.69 & 0,691 \\
\hline \multicolumn{4}{|l|}{31 l} & & 1 \\
\hline \multicolumn{3}{|l|}{alden auto miles Per gallon} & (WEFA) & & 1 \\
\hline \multicolumn{3}{|l|}{} & I & & 1 \\
\hline hl & total & & 1 & 20,30 & 20.411 \\
\hline \multicolumn{3}{|l|}{11} & \%GROIVTHI & 0,51 & 0.541 \\
\hline \multicolumn{3}{|l|}{81} & 1 & & 1 \\
\hline 91 & SUHCOMPAC & & 1 & 27.88 & 28.061 \\
\hline 101 & & & GFROWWTHI & 0.59 & 0.641 \\
\hline 111 & & & I & & \\
\hline 121 & CUMPACt & & 1 & 22.97 & 23.111 \\
\hline 131 & & & YFROWTHI & 0.57 & 0.621 \\
\hline 141 & & & 1 & & 1 \\
\hline isi & MIn-SIZE & & 1 & 19.20 & 19,321 \\
\hline 161 & & & XTHOWTHI & 0,56 & 0,611 \\
\hline 111 & & & 1 & & 1 \\
\hline | 81 & FULL SIZE & & 1 & 17.95 & 18,061 \\
\hline 191 & & & xGROWTHI & 0,56 & 0.611 \\
\hline 201 & & & 1 & & 1 \\
\hline 211 & Luxury & & 1 & 17.09 & 17.201 \\
\hline 221 & & & XGROWTHI & 0.56 & 0,611 \\
\hline 231 & & & I & & 1 \\
\hline 241 N & Fw Allith m, & , Ci, by fuhiola & (WEFA): I & & 1 \\
\hline 231 & & & I & & 1 \\
\hline 2 bl & ITIAL DDMES & SIIC & 1 & 19.69 & 19.811 \\
\hline 211 & & & YGGOWTHI & 0,52 & 0.561 \\
\hline 281 & & & 1 & & \\
\hline 291 & total fijues & 1 GH & 1 & 26.114 & 26,591 \\
\hline 301 & & & KFROWTHI & 0,54 & 0.581 \\
\hline 311 & & & , & & 1 \\
\hline 321 & Dompstic & SIIRCOMPACT & 1 & 27.86 & 28.031 \\
\hline 331 & & & \%TRDWTHI & 0.58 & 0.621 \\
\hline 301 & & & I & & 1 \\
\hline 351 & FOHEIGN S & SIABCOMPACT & 1 & 27.90 & 28.081 \\
\hline 3 bl & & & XGROWTHI & 0.61 & 0.651 \\
\hline 371 & & & 1 & & 1 \\
\hline 381 & DIMESTIC & compact & 1 & 22.79 & 22,931 \\
\hline 341 & & & XGRUWIHI & 0.57 & 0,621 \\
\hline \multirow[t]{2}{*}{401
411} & & & 1 & & 1 \\
\hline & FOREIGH & compact & 1 & 25.76 & 25.931 \\
\hline 421 & & & xGHOWTHI & 0.60 & 0,691 \\
\hline 431 & & & , & & 1 \\
\hline 441 & DOMESTIC & 1.uxilay & 1 & 16,76 & 16.061 \\
\hline 451 & & & \%gruwiml & 0,56 & 0.611 \\
\hline 4 HI & & & 1 & & 1 \\
\hline 411 & F OHEIGN & Luxisy & , & 20.00 & 20.121 \\
\hline QR1 & & & \%GROWTHI & 0.60 & 0,651 \\
\hline
\end{tabular}


 \(M N\)
\(=N\)
\(=0\) \(\begin{array}{ll}12 \\ 0 & m \\ m \\ m \\ m\end{array}\) \(\begin{array}{ll}n=0 \\ n & n \\ n \\ n\end{array}\)
\(\begin{array}{lll}n & 0 \\ n & 0 & 0 \\ n & 0 & 0\end{array}\)
6507
6.30
7358
11267
5.93
 \(\begin{array}{llll}0 & 0 & 0 & 0 \\ \infty & 0 & 0 & 0 \\ 0 & \infty & 0 & 0\end{array}\) \(\cdots \infty\)



 \begin{tabular}{l}
\multirow{2}{*}{} \\
\(\cdots\) \\
\(\infty\) \\
\(\infty\) \\
\(m\)
\end{tabular}



\(\rightarrow\) Na
국
N4175
6.45
4747
6.18
5725
6.06
6487
5.91
9957
5.75
\[
\begin{gathered}
3922, \\
4.75 \\
4471, \\
4.45 \\
5398, \\
4.44 \\
6125, \\
4.45 \\
9416 . \\
4.38
\end{gathered}
\]
\[
\begin{aligned}
& \bar{\sigma} 0 \\
& \tilde{0} \\
& \underset{\sim}{n}
\end{aligned}
\]
\[
\begin{aligned}
& \text { Om } \\
& \text { ©in } \\
& \text { in } \\
& m
\end{aligned}
\]
\[
\begin{aligned}
& \infty \\
& 0 \\
& \dot{c}= \\
& \sigma
\end{aligned}
\]
\[
\begin{aligned}
& E M \\
& 0 M \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\]

OOLLARSI
XGROWTHI

DOLLARS！
XGROWTHI
dollahsi三 DOLLARSI


 \(\bar{m}\)
\(x\)
\(\vdots\)
\(\vdots\)
0
0



 DOLLAHSI
 DOILLARSI
 DULLARS


 MOLLARSI
KGROWTHI

 돛

LINE

IItOTAL AUTO PRICESI
 401 compact MID－SIZE
FULL SITE

\footnotetext{
LuxuRy
} 31 SU日COMPACT

\author{
cIMPACT
}

N10－SI2E
FULL SIZE
LIIXURY
bistate and local taxesi

\section*{SUBCIMPACT}
cmpact
MIC－SIZE
FILL SIZE
371
381
391
\[
\begin{array}{r}
158,24 \\
14,63 \\
180,05 \\
15,70 \\
218,04 \\
16,70
\end{array}
\]
\[
\begin{array}{r}
147.77 \\
12.59
\end{array}
\]
\[
\begin{array}{r}
175.93 \\
13.21
\end{array}
\]
\[
\begin{array}{r}
190.75 \\
13.97
\end{array}
\]

ミニ ほ こ こ兵 든

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline L. INE & & \multicolumn{2}{|l|}{1 1fM} & 1987 & 178R & 19 月9 & 1990 & 1991 & 1992 \\
\hline 111 & Htal Allof Prict & 131 & 1 & & & & & & \\
\hline 21 & & & 1 & & & & & & \\
\hline 3 & sulichiapact & & DOLLARSI & 6609 , & 68699 & 7140 & 7421. & 7691. & 1779, \\
\hline 41 & & & \%GROWTHI & 4.04 & 3.94 & 3.94 & 3.94 & 3.63 & 3.74 \\
\hline 31 & & & 1 & & & & & & \\
\hline 61 & COMPACt & & OOLLARSI & 75'58, & 7858 & 8170 , & 8493. & 8801. & 9130. \\
\hline 71 & & & 2GROWTHI & 4.06 & 3.97 & 3.97 & 3.96 & 3,63 & 3.73 \\
\hline 81 & & & 1 & & & & & & \\
\hline 91 & M1D-5I2F & & DOLLARSI & 8958. & 7279. & 9652. & 10017. & 10366. & 10738. \\
\hline 101 & & & \%GROMTHI & 3,88 & 3.80 & 3,80 & 3.71 & 3.48 & 3.59 \\
\hline 111 & & & 1 & & & & & & \\
\hline 12.1 & FULL. SIzE & & DELlarsi & 10035. & 10410, & 10799. & 11201, & 11587. & 12000, \\
\hline 131 & & & \%FANOTHI & 3, 81 & 3.73 & 3.74 & 3.73 & 3.45 & 3.36 \\
\hline 141 & & & 1 & & & & & & \\
\hline 151 & Luxury & & Dullarsi & 15316, & 15777. & 16362. & 16966: & 17546. & 18168, \\
\hline 161 & & & *SROWTHI & 3.77 & 3,69 & 3.10 & 3.70 & 3.42 & 3.54 \\
\hline 171 & & & 1 & & & & & & \\
\hline 1815 & tate and local & TAXESI & 1 & & & & & & \\
\hline 191 & & & 1 & & & & & & \\
\hline 201 & SURCOMPACT & & DHLLARSI & 345,27 & 365.20 & 386.28 & 408,61 & 430,86 & 454, 80 \\
\hline 211 & & & \%GRONTHI & 5, 88 & 5.77 & 5.77 & 5,78 & 5.45 & 5.96 \\
\hline 221 & & & 1 & & & & & & \\
\hline 231 & compact & & DOLLARSI & 392,50 & 415,26 & 439.31 & 464.71 & 489.94 & 517.06 \\
\hline 241 & & & \%GROWTHI & 5,89 & 5,80 & 5.19 & 5.76 & 5.43 & 5.54 \\
\hline 251 & & & 1 & & & & & & \\
\hline 261 & MID-SIzE & & DOLLARSI & 464.64 & 490,62 & 518.06 & 546,96 & 575.68 & 606,56 \\
\hline 211 & & & XGRIIWTHI & 5.68 & 5,59 & 5.59 & 5,56 & 5.25 & 5,36 \\
\hline 281 & & & -0la & & & & & & \\
\hline 291 & fULL SIZE & & DOLLARSI & 518.78 & 547.40 & 577.61 & 609,42 & 641.11 & 675.22 \\
\hline 301 & & & KGROWTHI & 5.60 & 5,52 & 5,52 & 5,51 & 5.20 & 5,32 \\
\hline 311 & & & 1 & & & & & & \\
\hline 321 & luxury & & DOLLARSI & 794,69 & 838,24 & 884, 26 & 932.73 & 961.08 & 1033.21 \\
\hline 331 & & & \%GROIVTHI & 5,56 & 5.48 & 5.49 & 5.48 & 5.18 & 5.31 \\
\hline 311 & & & , & & & & & & \\
\hline 3511 & RANSPORTATION & CHARGES: & 1 & & & & & & \\
\hline 361 & & & 1 & & & & & & \\
\hline 371 & SUBCOMPACT & & OOLLARSI & 155.62 & 160,35 & 165,20 & 170.08 & 175.31 & 180,56 \\
\hline 381 & & & \%GROWTHI & 2.97 & 3.04 & 3,03 & 2.95 & 3,07 & 3.00 \\
\hline 391 & & & 1 & & & & & & \\
\hline 401 & compact & & DOLLARSI & 222,39 & 230.17 & 238;23 & & & 264.12 \\
\hline 411 & & & \%GROWTHI & 3.50 & 3,50 & 3,50 & 3,50 & 3.50 & 3.50 \\
\hline 421 & & & 1 & & & & & & \\
\hline 431 & M10-SI2E & & DOLLARS & 214.50 & 286,25 & 298.46 & 310, 86 & 324.29 & 337,9? \\
\hline 441 & & & \%GROWTHI & 4.20 & 4.28 & 4. 27 & 4.15 & 4.32 & 4,20 \\
\hline 451 & & & 1 & & & & & & \\
\hline 461 & FULL SIZE & & DILLLARSI & 338,96 & 354.33 & 370.32 & 386,60 & 404.27 & 422,25 \\
\hline 471 & & & \%ghtiviti & 4.44 & 4.53 & 4.51 & 4.39 & 4.57 & 4.45 \\
\hline 481 & & & & & & & & & \\
\hline 491 & Luxijay & & OOLLARSI & 362,97 & 379,30 & 396.37 & 414.20 & 432.84 & 452,32 \\
\hline 501 & & & \%GROWTHI & 4,50 & 4.50 & 4.50 & 4.30 & 4.50 & 4.50 \\
\hline
\end{tabular}
TAHLE 1.06 DOMESTIC AUTO PHICES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{INE I TE H} & 1973 & 1994 & 1995 & 1996 & 1997 & 1998 \\
\hline 11 & OTAL AISTO PRIC & ES! & I & & & & & & \\
\hline \multicolumn{10}{|l|}{21} \\
\hline 31 & SUBCOMPACt & & COLLARSI & 82.74. & 8576. & 8896. & 9203. & 9533. & 9877 \\
\hline 01 & & & \%GRLWTHI & 3,70 & 3.64 & 3.74 & 3.45 & 3,59 & 3.61 \\
\hline \multicolumn{10}{|l|}{51} \\
\hline 61 & coipact & & Dillearsi & 9468 , & 9812. & 10176, & 105?2. & 10891. & \[
11273 .
\] \\
\hline \multicolumn{10}{|l|}{} \\
\hline 81 & & & 1 & & & & & & \\
\hline 91 & M1D-S12E & & DOLGAHSI & 11121. & 11511. & 11924. & 12313. & 12728. & 13160 , \\
\hline \multicolumn{10}{|l|}{} \\
\hline 111
121 & FULL SIzt & & dollars! & 12424. & 12856. & 13314. & 13744. & 14204 & 14682 \\
\hline \multicolumn{10}{|l|}{} \\
\hline 101 & & & 1 & & & & & & \\
\hline 151 & Luxijar & & DOLLARSI & 18808. & 19459. & 2015?. & 20799, & 21493. & 22215. \\
\hline |hi & & & KGROWIHI & 3.52 & 3.46 & 3.50 & 3,21 & 3.34 & 3.36 \\
\hline 171 & & & 1 & & & & & & \\
\hline \multicolumn{10}{|l|}{IBISTATE AND LOCAL IAXES: I} \\
\hline \multicolumn{10}{|l|}{191} \\
\hline 201 & subcompact & & DOLLARSI & 479.88 & 506.05 & 534.11 & 562.10 & 592,36 & 624.38 \\
\hline \multicolumn{10}{|l|}{} \\
\hline 221 & & & dit & & & & & & \\
\hline 331 & COMPACt & & DILLARSI & 545,50 & 575.12 & 606.83 & 638.24 & 672.02 & 707.61 \\
\hline \multicolumn{10}{|l|}{} \\
\hline 251 & & & - & & & & & & \\
\hline \(? 61\) & M10-S 12 t & & DOLLARSI & 638.93 & 672.61 & 708.65 & 744.15 & 182,33 & 822,55 \\
\hline \multicolumn{10}{|l|}{} \\
\hline 281
291 & FULL SIIE & & dOLlars I & 910,94 & 748.12 & 787.92 & 827.03 & 869.12 & 913.48 \\
\hline \multicolumn{10}{|l|}{} \\
\hline & & & 1 & & & & & & \\
\hline 321 & buxijar & & DOLLARSI & 1087.83 & 1144.69 & 1205.63 & 1265:35 & 1329.74 & 1397.64 \\
\hline 331 & & & KGHOWTHI & 5.29 & 5.23 & 5.32 & 4.95 & 5.09 & 5.11 \\
\hline 341 & & & I & & & & & & \\
\hline \multicolumn{10}{|l|}{3SITRANSPURTATION CHARGE Si} \\
\hline \multicolumn{10}{|l|}{361} \\
\hline 371 & SURCOMPACT & & DCLLARSI & 185.95 & 191.59 & 197.36 & 203.21 & 209.32 & 215.62 \\
\hline 3 HI & & & XGHONTHI & 2.98 & 3.03 & 3.01 & 2.99 & 2.98 & 3.01 \\
\hline \multicolumn{10}{|l|}{301} \\
\hline 401 & compart & & DOLLARSI & 273,37 & 282.94 & 292.84 & 303.09 & 313.70 & 324.68 \\
\hline \multicolumn{10}{|l|}{} \\
\hline \multicolumn{10}{|l|}{421 I} \\
\hline 031 & M10-S12E & & DOLLAHSI & 352.06 & 366,99 & 382.14 & 398.46 & 415.02 & 432,46 \\
\hline \multicolumn{10}{|l|}{} \\
\hline 451 & & & dollarsi & & & & & & 547.94 \\
\hline 471 & FILL STIE & & XGRUWIHI & 44.93
4.42 & 460.17
0.49 & 4.46 & 50.55
4.43 & 524.63
4.39 & 0.44 \\
\hline पन1 & & & 1 & & & & & & \\
\hline 471 & Luxiry & & DOLLARSI & 472.67 & 493.94 & 516.17 & 539.40 & 563.67 & 589.03 \\
\hline 501 & & & XGROWTHI & 4.50 & 4.50 & 4,50 & 4.50 & 4,50 & 4.50 \\
\hline
\end{tabular}





1980
5558.
4.96
4135.
4.96
4402.
4.96
5096,
4.96
5724.
4.96
9275
4.96

\(\begin{array}{ll}\tilde{n} 0 & 0 \\ \text { nio } \\ \text { n } & 0 \\ 0 & 0\end{array}\)


 \(=\infty\)
2-
2
\(=\) 1979
5296
5.81
3939
3.81
4194,
5.81
48569
5.81
5454,
5.81
8837
5.81 1583.97
4.67
1418.85
4.67 \(\infty\)
00
0
0
0
\(=0\) ミ2
0
0
0
\(n\) mo
\(0-0\)
0
0 50
\(=0\)
\(=\)
0 \(\begin{array}{ll}0-0 & 0 \\ 0 & 0 \\ n \infty & =0 \\ = & \infty\end{array}\) 1176.26 1353,30
6,50
告
 1513.27
5.15
1355.52
5.15
1430.83
5.15 on
-
ñ
ñ
ñ


\(11^{\circ} 9\)
\(99^{\circ} 0 L\)
SC'DOSI 1439.18
4.67
1289.15 N
0
0
-
\(=\) \(19^{\circ} \%\)
\(10^{\circ} 8101\) 50
00
0
0
 406.44
13.17
693.47
8,78 693,47
8,78
1027,72 \(\sim\)
\(\sim\)
\(\sim\)
\(\sim\)
\(\sim\) 1196.81
6.51 \(n\)
0
0
\(i\)
\(i n\)
in


\section*{1976}
 3291.
4.08 3504.
4.08 4057
4.08 No
\(n_{n}^{n}=\)
 1374.91
5.30
1231.61
5,30
1300.03
5.30
1354.77
5.30
1395.82
5.30 1601,09
5,30 \(E \sim\)
\(i=\)
\(i=\) \(\stackrel{0}{9}\) 957.13
5.79 1123.71
5.74 1427.92 \(\begin{array}{ll}\text { OULLARSI } & \text { 4251. } \\ 14.94\end{array}\) OILLARSI 1163. 3357.
111.93 389н. \(\infty \sim\)
\(m 0\)
\(m=\) joㅇ
0
مin 1305,73
10,46 1169.61
 0 in
nis
nin
 nin
nio
n 프N
드N
 N
-
0
0 \(\begin{array}{ll}0 \sim & 0 \\ 0 & 0 \\ 0 & n \\ 0 & n \\ 0\end{array}\) 1357.19
17.03 OIJLLARS
XTHOWFHI
DILLARS DOLLARSI
q(;ROWTH) DOLLARSI \%CRTIWTHI DOLLARSI YGRONTHI DULLAKSI \%GRIWTHI
 ODLLARSI xGROWTHI DOLLARSI
 DOLLARSI KGROMTHI DOLLARSI
 DOLLARSI \%GROVITHI
 KGROWTHI OULLARSI \%GRO:VIII mollapsi mollapsi
gorowimi stav7000 \&GHCVITHI DOLLAFSI



 191max OPT PRICF. 1 FTXEO-WITO AUR,
?O1
?11
subcompact
comparit
N10-SI2E
FULL SIIE
luxury
IJE IJF TPTIDNS JNSTALLEDI
SUACOMPACT
COMPACT
NIO-SIZE
FIHLL SIZE
LUXURY

3)Va

1786
6834
3.75
50814
3.75
5412.
3.15
6266.
3.15
7038
3.75
11405
3.75
1944.54
2.82
1741.83
2.82
1838.60
2.82
1916.02
2.82
 Mn
\(\circ\)
\(0 m\)
0
0


 6139
3.74

 10278
3.94


 Mス ヨす \(\begin{array}{ll}30 & 0 \\ \text { ㅂo } \\ \text { min } & 0 \\ 0 & \exists\end{array}\)
 ₹
0
0
0
0 3026
3.54 4408. 3,35 ing 5433.
3.35 \(\frac{c^{-n}}{c_{0}^{2}}\) 9889.
3.35 \(\begin{array}{ll}=0 & 0 \\ & 0 \\ & 0 \\ & 0 \\ = & n\end{array}\)


 응
\(0-\infty\)
0. \(x=0\)
0
0
0
0 －o
\(0-10\)
on
m \(0 n\)
\(\pi=0\)
\(i n\)


\section*{1981
5734
3.15} 11265. 0
으N
\(=\)
－Non
Nin 9568： \(\begin{array}{ll}\text { Ko mm } \\ \text { On } \\ o_{0}^{-n} \\ 0 & n\end{array}\)


 \(\begin{array}{ll}\text { OM } & = \\ -0 & 0 \\ 0 & 0 \\ \vdots & \infty\end{array}\) \(-\infty\)
0
0
\(\infty\)
\(\infty\) DLLIAHSI
KGROWTHI nollarsi KGROWTHI DOLLARSI
\％GRONTHI年 \％GHOWTHI ROILAKSI
KGRUWTHI
 KrHCIWTHI COLLARSI
XGROWTHI
ORLLARSI DOLLARSI
甘GROWTHI DOLLARSI
KGROWTKI
 OOLLARSI YGROMTHI
 DOLLARSI
KGHOWTHI DOLLARSI水
 a
a
د
릉



L．NF


IYIMAX OPT PRIC．FI FIXED－WTO AVG
 SUBCOMPACT
COMPACT
MIN－STLE
FULLL SIZE．
LUXURY LuXURY


COMPACT
MIO－SIZE
FILL SIIE
sUIICOMPACT
COMPACT
MID－SIZE．
FILL SITE
LUXURY 은 こえごゥ 251
261 えの に この ぶシ シ から品品 ָ ぶき ぶきニ ご 491
301
511
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline L1M & 1 T \(F M\) & & 1987 & 19 ¢ & 1989 & 1990 & 1991 & 1992 \\
\hline 1104SF & HRICEI Fixto-wio avg int & OILLAESI & 1090 , & 7348. & 7618. & 7896 , & Al61. & R407, \\
\hline 21 & & KGRONTHI & 3.74 & 3,65 & 3,67 & 3.66 & 3,35 & 3.50 \\
\hline 31 & & 1 & & & & & & \\
\hline 41 & SHBCUPPAC & DILLARSI & 5274, & 5466. & 5667. & 5874, & \(6071{ }^{\circ}\) & 6) R4, \\
\hline 51 & & \%GRIMTHI & 3.74 & 3,65 & 3.67 & 3,66 & 3.35 & 3.50 \\
\hline bl & & 1 & & & & & & \\
\hline 71 & COMPACT & DOLLARSI & 5614. & 5819. & 6032. & 6253, & 6463 , & 6689 , \\
\hline 81 & & XGROWTHI & 3.711 & 3,65 & 3,67 & 3.66 & 3.35 & 3.50 \\
\hline 91 & & 1 & & & & & & \\
\hline 101 & MID-SILF & DULLARSI & 6500 , & 6737. & 6984. & 7240 , & 7482. & 1745, \\
\hline 111 & & YGROWTHI & 3.711 & 3.65 & 3.67 & 3.66 & 3.35 & 3.30 \\
\hline 121 & & 1 & & & & & & \\
\hline 131 & FULL SILE & DHILARSI & 7301. & 7568. & 78115 & A132, & 8405 , & 8699. \\
\hline 141 & & \%GRONTHI & 3.74 & 3,65 & 3,67 & 3.66 & 3.35 & 3.50 \\
\hline 151 & & 1 & & & & & & \\
\hline \(1 \mathrm{H1}\) & Luxidey & DILLARSI & 11831. & 12262, & 12712, & 13177. & 13619. & 14096, \\
\hline 171 & & XGROWTHI & 3,74 & 3,65 & 3.67 & 3.66 & 3, 35 & 3.50 \\
\hline 181 & & 1 & & & & & & \\
\hline 191max & OPT PRICEI FIXET-NTC AVG & DOLLARSI & 2000.19 & 2056.75 & 2114,88 & 2174,56 & 2232,38 & 2292.41 \\
\hline 201 & & \%GRONTHI & 2,86 & 2,83 & 2,83 & 2,82 & 2,66 & 2.69 \\
\hline 211 & & 1 & & & & & & \\
\hline ? 21 & SUBCOHPACT & DOLGARSI & 1791.68 & 1842.34 & 1894.41 & 1947.87 & 1999,66 & 2053.43 \\
\hline 231 & & KGRUWTHI & 2,86 & 2,83 & 2.83 & 2,82 & 2,66 & 2.69 \\
\hline 241 & & 硣 & & & & & & \\
\hline 251 & comparet & COLLAHSI & 1891.22 & 1944.69 & 1999,66 & 2056,09 & 2110,75 & 2167.51 \\
\hline 261 & & XGROINTHI & 2,86 & 2,83 & 2.83 & \[
2,82
\] & 2,66 & 2,69 \\
\hline 211
2011 & & & & & & & & \\
\hline ? 21 & 410-512f & DILLARSi & 1970.85 & 2026,57 & 2083,85 & 2142,66 & 2199.63 & \[
2250,78
\] \\
\hline 271 & & \%GROWTHI & 2.86 & 2.83 & 2,83 & 2,82 & 2,66 & \[
2.69
\] \\
\hline 301 & & onliansi & & & & & & \\
\hline 311
321
31 & FILL 312t & OHLLARSI
XIGROWTHI & 2030.57
2.86 & 2081.98
2.43 & 2147,00
2,83 & 2207.59
2.82 & 2266,28
2,66 & 2327.22
2.69 \\
\hline 331 & & 1 & & & & & & \\
\hline 341 & luxury & OOLLARSI & 2329.18 & 2395,04 & 2462.74 & 253?.23 & 2597:56 & 2669.46 \\
\hline 151 & & xGROIVTHI & 2,86 & 2,8.3 & 2,83 & 2,82 & 2.66 & 2.69 \\
\hline 301 & & 1 & & & & & & \\
\hline 37IVALIJ & Jt of IPTIONS IfStablent & 1 & & & & & & \\
\hline 3 Al & SUHCTMPACT & OOLLARSI & 833,9 ? & 877.06 & 921,46 & 968,69 & 1013,89 & 1059.77 \\
\hline 371 & & \%TSROWITHI & 5,42 & 5,17 & 5.06 & 3.13 & 4,67 & 4.52 \\
\hline 401 & & 1 & & & & & & \\
\hline 411 & compact & oullarsi & 1327.06 & 1393.76 & 1460.28 & 1529.17 & 1593,6A & 1659.67 \\
\hline 43) & & XTROWTHI & 4,99 & 4, 87 & 4,77 & 4.72 & 4. 3.2 & 4.14 \\
\hline 431 & & 1 & & & & & & \\
\hline 141 & MID-SITE & Dillarsi & 1719.07 & 1784.44 & 1851.23 & 1919,67 & 1983,60 & 20119.13 \\
\hline 4, 1 & & \% (GA)WTHI & 3,90 & 3, BO & 3,74 & 3,70 & 3,33 & 3, 30 \\
\hline 4.1
471 & & onliarsí & & & & & & \\
\hline 141 & FIIIL SIIF & OULI.ARSI
YGROWTHI & 1875.92
3.51 & 1940,38
3,44 & 2006.20
3.39 & 2073,59
3,36 & 2137.51
\(3,0 \mathrm{H}\) & 3,008 \\
\hline 9.1 & & - & & & & & & \\
\hline 501 & Luxijay & ODLLARSI & 2221.09 & 2297.27 & 2369.16 & 2442,84 & 2513.65 & 2586,75 \\
\hline 311 & & XCHOWIHI & 3,21 & 3,15 & 3.13 & 3,11 & 2.90 & ?.91 \\
\hline
\end{tabular}
19911
－－－－
10294

7438
3.50
106010
3,30
17178
3.30
2673.65 3
\(\cdots\)
\(\vdots\)
 \(c=0\)
0
0
\(n\)
\(n\)
\(n\) \(\begin{array}{ll}m= \\ \cdots & n \\ \cdots & n \\ n & n\end{array}\)
 ジゥ
 \(\begin{array}{ll}\infty & 0 \\ m= \\ m & 0\end{array}\) \(2 \pi\)
0
0
0
0 \(80^{\circ} 8\)
\(8 h^{\circ} 99 h z\) 2619.39
2.83 \(m\)
\(\cdots\)
\(n\)
0
0
0
0
0
\(\qquad\) 7413
3.28
78928
3.28
\(-\infty\)
\(m_{0}^{-\infty}\)
\(m\)

16630,

 Mn
\(0 \sim\)
0
0
0 \(\begin{array}{ll}\overrightarrow{0} & 7 \\ \infty & 0 \\ \cdots & 0 \\ \cdots & 0 \\ \square & n\end{array}\) \(\begin{array}{lll}\overrightarrow{0}= & 0 \\ 0 & 0 \\ \infty & 0 & n \\ 0 & n\end{array}\) \(-m\)
00
0
0
0
\(m\)
 0
0
0
0
0
0
0 96199
3.13 E～


Ma 16102


 2506.07 2582.03
2.50 2961.74
2.50 1259.45
4.58 1939．26

 \(\sim\)
\(=0\)
0
\(\sim\)
\(\sim\)
\(\sim\) （JIINIINUJ＊SJJIAd（HANV JILStwou \(10^{\circ} 1\) JTHVI



 2416.30
2.65 ज
\(=0\)
\(\vdots\)
\(\vdots\) 2222.74 No
Nin
N


\(\qquad\) \(\vec{\sigma}\)
\(\underset{\sim}{n}\)
\(\underset{\sim}{n}\)
\(\sim\) -0
00
0
0
 9357,
3.52 6961,
\(3.5 ?\) 7410,
3.52 \(25^{\circ} 5\)
6158 9636,
3.52 シ～～～ 2481.42
2.70 1204，30 1866.85
3.95 \(\underset{\sim}{n}\) 9039
3.41 6124,告ご

 2284.65
2.65
 EN
N
N Min

 8711
3.48
6502.
3.48
6921.
3.48 8014.
3.148 9001.
3.48 14586. 2353.94
2.68 2108．55 2225.70
2.68
 \(\circ\)
\(=0\)
0
\(\infty\)
\(\infty\)
 1106.44
4.40
1727.28
4.07
2116.14
3.27 2270.39 3,05
2661,48 2661.48 DOLIARASI XGBOMTH DILLARSI XGROWTHI DILlars！ YGROVTHI DOLL．ARSI
 dollarsi xGROWTHI \begin{tabular}{l} 
m \\
\(\frac{3}{5}\) \\
\(\overrightarrow{5}\) \\
\hline
\end{tabular}
 nOLLARSI \％KROWTHI DOLLAHSI玉

亲

 플
 XGROWTHI ふ
 DOLLARSI
XGROWTHI

 DILLARSI
\％GHOWTHI

LINF ITEM \(\begin{array}{ll}1 & 1 \\ 21 \\ 3 & 1 \\ 4 & 1 \\ 51 \\ 61 \\ 71 \\ 81\end{array}\) 181
191 MAX OPT PHICE：FIXED－WITO AVG
131
101
151
161
171
181
1919 MAX
201
211
2121 BUHCOMPACT

\section*{FIUL SIZE}
M1D－SI2F
COMPACT
sumeompact
91
101
\(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1\end{array}\)
compact luxury
LuxURY
Mリーロー
ニえ
COMPACT
M10－SILE
32157714
LuXURY
37 IVALUE IIF OPYIONS INSTALLED：

COMPACT
MII－SIZE
FULL SIZE
LIJXIMAY
LIJXIHA
IARLF 1,01 DUMESIIC AlltO PRICYS CONTINUED





IGINAX OPT PRICEI FIXED-WITD AVG
POI


361
37IVALUE OF OPTIOAS IHSTALLEDI
3BI SUHCOMPACT
301 381 SUHCOMPACT
COHPACT
MII-SIZE
FIULL SIZF
LIJXIMY茉:


COMWACT
MINOSIZE
FILL SIZE
LUXIHY
1780
5012,
4.56
8604,
5.57
17665
6.25
0







3979
4.81
6810
6.06
-n
0
0
0
1797


\(3797 \%\)
4.82
64218
6.07
13005
7.37


 \(\begin{array}{ccc}\text { Mn } \\ \text { min } \\ \text { min } \\ 0 & \text { n } \\ 0\end{array}\)
IABLI \(1, O B\) FOREIGN AJIO PRICIB


\(1975 \quad 1916\)
4160
6.57
6921.
7.60
13833.
9.00




3320
3.88
5428
9.91
10617
12.81 --
\[
\begin{gathered}
3524 \\
6.14 \\
5849 \\
7.76 \\
11619 \\
9.43 \\
\hline-0.0
\end{gathered}
\]
TABLE I.OA FOHEIGN AUTO PRICES
1906
6236,
3.55
11062.
4.13
23274.
4.65





\(-n\)
\(0-\)
0
0


-
1985
4.68
303.92
5,50
\(538.6 ?\)

\(\begin{array}{lll}0-\infty & 0 & 0 \\ 0 & 0 & 0 \\ \infty & 0 & 0 \\ \infty & 0 & 0 \\ n & 0 & 0\end{array}\)


\(\begin{array}{lll}\infty 0 & -u n & -0 \\ 0 & 0 \sim & \Rightarrow \\ 0 & 0 & n= \\ n & n\end{array}\)
0

\(=0\)
0
0


\(\begin{array}{lll}\infty 0 & 0 & 0 \\ \infty & 0 \\ \infty & 0 \\ \infty & 0 & 0 \\ \infty & \infty & \infty \\ m & 0\end{array}\)
4542
3.11
8037
3.91
국
웅
\(=\)
5398.
3.77
9372.
4.33
19375.
19375
4.69
258.62
5,57
451,0 ?
61.15
937,66
6.51
126,49
4.41 179.00
品
1405
3.09
7735
3.89
16280
\(4.7 i\)
5202
3.77
8982,
4.39
18506,
4.76
244.96
5.59
434.87
6.27
880.37
6.54

4273
3.12
7446.
3.93
\begin{tabular}{l} 
N \\
\multirow{2}{*}{\(=\)} \\
\(n=\)
\end{tabular}
DOLLARS!
XGRCIWIII
OOLLARSI YGKOVITHI
DULLARSI XGROWITHI

DOLLARSI
 OOLLARSI
 \&TROWTH!

DULLARSI
 DOLLARSI
XGROWTHI
 XGRONTHI
- -
rollarsi XCROWTH:
Drillarsi


।IJUAL AIJU PKICES,
LINE 1 TEM

TAHLE \(1.0 B\) FOREIGN AIITO PHICES
\(\tilde{\tilde{\sigma}} \quad\) ご ご




 \begin{tabular}{lll}
\(\infty 0\) & \(n\) & 0 \\
& 0 & 0 \\
0 & 0 & 0 \\
\hdashline & \(\infty\) & \(\vdots\) \\
\hdashline & \(n\) & 0
\end{tabular}
 61＇n 4．CK
1991
    \(1990 \quad 1971\)


1489


\(\begin{array}{lll}\operatorname{nin} & m 0 & m 0 \\ 0 m & n & m=0 \\ 0 & n & m\end{array}\)

inn
0
in
\(n\)
\(n\)




19871788 -1
1

\(\begin{array}{lll}\text { nio } & n 0 & 00 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & n & m \\ i n & m\end{array}\)

I
OMLLARSI
KGROWTHI
I
DOLLARSI
KGREWTHI
OOLLAHSI XGHOWTHI

裔 an
z
号
0





LINE IIf M


TABLE \(\quad\) I，DR fineign auto pricfs
\(\begin{array}{rr}8889, & 9166, \\ 3.17 & 3.19 \\ 16709 . & 17316, \\ 3.63 & 3.64 \\ 37272, & 38841, \\ 4.19 & 4.21\end{array}\)


 \(=\)
\(\begin{array}{rr}8881, & 9166, \\ 3.17 & 3.19 \\ 16709, & 17316, \\ 3.63 & 3.64 \\ 37272, & 38841,\end{array}\)
\(\div\)
551.36
4.95
1042.16
5.42




i


\(m o\)
\(i n\)
00
0
0
0
0
inn
in
\(\infty 0\)
\(=-\)
0
\(i\)
\(i n\)
\begin{tabular}{lll}
\(\therefore \sim\) & 0 & 0 \\
\multirow{2}{*}{} & 0 \\
0 & 0 & 0 \\
0 & 0
\end{tabular}



6448
2.76
12467
3.47
28960
4.20




1994
（

－
\(\begin{array}{lll}00 & \text { in } 0 & n \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \dot{x} & 0 & 0 \\ n & n & 0\end{array}\)
6107
2.77
11645
3.49
26672,
11.22


DOLLARS
XGHOWTHI
DOLLARSI
KGROWTHI


ORLLARSI
KFROWTHI
OOLLARSI
\％GROWTHI

年

DOLLARSI
YGROWTHI
s
0
0
0
0
0
0
－
들
114F 1 1 1 M

IIftal auto pricest

\(1315 T A T E\) AND LOCAL TAXESI
141
151 SUACOMPACT
161
171
181 COMPACT
191
201
211
\(? 21\)
231
241
SITRANSPGRTAYION CHAHGESI
271
241
271
271
301
311
321
Luxher
ミござミ
371 SIJBCOMPACT
ここうこう
＂nt
37 Hast phicest

TABLE 1,00 FIIREIIIN AIITO PRICES
\[
\begin{aligned}
& \begin{array}{c}
1799 \\
9460 \\
3.21 \\
17944, \\
3.62 \\
40473 \\
4.20
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{l}
\text { OOLLARSI } \\
\text { YGROWITHI }
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{l}
\text { DOLLARSI } \\
\text { GGRONTHI }
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{l}
\text { ふI } \\
= \\
=0 \\
0 \\
0
\end{array}
\end{aligned}
\]

21
31
41
51
61
71
81
71
101
111
121
121
1 I
141
151
SUBCOMPACT
CIMMPACT
LIIXURY
ミニニーの
ニージミ
BGITRANGPGKTATION CHARGFES：

281
COMPACT
LUXIJRY

 ミニミ

ごぎらす
AUTO MOOFL FIRECAST \(1975 \cdot 2000\)

AIITO MIDDEL FORFCAST \(1975-2000\)

AITO MODEL FOFERAST 1975-2000

AUTI MIUEL FORECAST \(1975-2000\)

AHIO MONEL FORECAST \(1975 \cdot 2000\)

\footnotetext{
TARLE I.09 USEO CAR MARKET

        \(5666.34 \quad 5867.921\)
        - - - -
            1
0.8121
-0.041
                0.7091
0.031
0.6601
0.081
                0,6421
                0
0
0
 0.7


\subsection*{0.3975 \(1795^{\circ} 0\) \(m\)
0
0
0 \(1260^{\circ} 0\) \\ 1.0173} 0.4115 0.2292 0.2841 0.0938 1.0186

table 1.10 linadjusten sharfs by sizf class

\title{
0.3 月7B
}
0,2364
0,3071
0,0903
1,0236 0.4037
0.2408 \(\begin{array}{ll}\pi & N \\ \sim \\ 0 & 0 \\ 0 & 0\end{array}\) \(\begin{array}{ll}\pi & N \\ \sim \\ 0 & 0 \\ 0 & 0\end{array}\) 1.0309 0.3929 0.2372 0.2973 0.0912 1.,0206 \(\begin{array}{llll}\sim & \infty & n & n \\ 0 & \approx & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\) \begin{tabular}{l} 
n \\
\multirow{4}{n}{} \\
0 \\
0
\end{tabular} 1.0178




\title{
0,3948
0,2358 \(n\)
0
\(\vdots\)
0
0 8
8
0
0
0 1.0211
} \(\begin{array}{llll}\sim & \equiv & M & 0 \\ \equiv & N & N & 0 \\ 0 & 0 & 0 & 0\end{array}\) 0
0
0
0 1.0248
\[
\begin{aligned}
& 0.4080 \\
& 0.2352 \\
& 0.2786 \\
& 0.0900 \\
& 1.0118
\end{aligned}
\]
\[
\begin{array}{llll}
\underset{\sim}{n} & 0 & \cdots & = \\
\underset{\sim}{\infty} & \infty \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
\]
\[
\begin{aligned}
& \overline{0} \\
& 0 \\
& 0
\end{aligned}
\]
\[
\begin{aligned}
& 0.4246 \\
& 0.2315 \\
& 0.2418 \\
& 0.0901 \\
& 0.9880
\end{aligned}
\]
\[
\begin{array}{llll}
n & n & 0 & n \\
& \underset{1}{n} & \infty & 0 \\
& \vdots & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}
\]
LINE

AHTO MHDEL FORECASY 1975-200O

TAHLE \(\quad 1.10\) UNADJUSTED shares By Sile class
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline LINE & & 1 1 EM & & 1987 & 17BA & 1989 & 1790 & 1971 & 177? \\
\hline \multicolumn{3}{|l|}{I Intsinto shahts in stock} & I & & & & & & \\
\hline \multicolumn{10}{|l|}{2IAEFORE RECIONCILING SIM TO 1.0} \\
\hline 31 & & & 1 & & & & & & \\
\hline 41 & SUHCEIMPACt & 8 rompact & 1 & 0.3812 & 0.3793 & 0.3775 & 0.3761 & 0.3750 & 0,3729 \\
\hline 51 & & & I & & & & & & \\
\hline 61 & MIn-SI2t & & 1 & 0.2374 & 0.2370 & 0.2366 & 0,2368 & 0.2351 & 0,2359 \\
\hline 71 & & & 1 & & & & & & \\
\hline 81 & FULL SIZE & & 1 & 0.2975 & 0,2948 & 0.2925 & 0.2886 & 0.2869 & \(0.2 月 32\) \\
\hline 41 & & & 1 & & & & & & \\
\hline 101 & LIJXURY & & 1 & 0.0982 & 0.0972 & 0.1001 & 0.1011 & 0.1021 & 0.1031 \\
\hline 111 & & & 1 & & & & & & \\
\hline 121 & fotal. & & 1 & 1.0144 & 1.0103 & 1.0067 & 1.002 .7 & 0.9995 & 0.9952 \\
\hline 151 & & & 1 & & & & & & \\
\hline 141 & & & 1 & & & & & & \\
\hline \multicolumn{3}{|l|}{ISIDESIRED SHAHES IN NIEW KEGISTRATIONS} & 1 & & & & & & \\
\hline \multicolumn{3}{|l|}{161HEFOHF HECONCILIJS, SUM TO 1.0} & 1 & & & & & & \\
\hline \multicolumn{3}{|l|}{171} & 1 & & & & & & \\
\hline 181 & shBCTMPACt & \(x\) compact & 1 & 0.3901 & 0.3908 & 0.3911 & 0.3923 & 0.3932 & 0,3932 \\
\hline 191 & & & 1 & & & & & & \\
\hline 201 & M10-StIE. & & 1 & 0.2368 & 0.2383 & 0.2393 & 0.2414 & 0,2401 & 0.2420 \\
\hline 211 & & & 1 & & & & & & \\
\hline 221 & FULL SIZE & & 1 & 0.2962 & 0.2920 & 0,2889 & 0.2838 & 0,2825 & 0,2792 \\
\hline 231 & LIIXURY & & 1 & 0,1015 & 0.1025 & 0,1035 & 0.1045 & 0.1055 & 0.1065 \\
\hline PS1 & Liruer & - & 1 & 0.1015 & 0.1025 & 0,1035 & 0.1045 & 0.1055 & 0.1065 \\
\hline Pbl & TUIAI. & & 1 & 1.0246 & 1.0236 & 1.0229 & 1.0220 & 1.0212 & 1,0209 \\
\hline
\end{tabular}
AUTO MIDEL FURECAST 1975 - 2000
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1993 & 1991 & 1975 & 1996 & 1707 & 1798 \\
\hline 0.3704 & 0.3677 & 0,3655 & 0.3627 & 0,3604 & 0,3388 \\
\hline 0.2355 & 0.2352 & 0,2.30 & 0.2346 & 0,2344 & 0.2341 \\
\hline 0,2812 & 0,2794 & 0,2772 & 0.2767 & 0.2757 & 0.2747 \\
\hline 0,104? & 0,105? & 0,1063 & 0.1074 & 0.1084 & 0,1095 \\
\hline 0.9913 & 0,9875 & 0.9839 & 0.9814 & 0.9790 & 0.9771 \\
\hline 0.3921 & 0.3908 & 0,3899 & 0.3875 & 0,3858 & 0,3849 \\
\hline 0,2425 & 0,2429 & 0.2433 & 0.2434 & 0,2436 & 0.2434 \\
\hline 0,2788 & 0.2787 & 0.2781 & 0.2797 & 0,2804 & 0.2804 \\
\hline 0.1075 & 0.1086 & 0.1097 & 0.1108 & 0.1119 & 0.1129 \\
\hline 1.0209 & 1.0210 & 1,0210 & 1,0214 & 1.0216 & 1,0216 \\
\hline
\end{tabular}

\footnotetext{
IOUESIHED SHARES IN STICK

}
CLASS
AHPO MGOEL IURFCABT 1775- ?OOO
fable 1.10 unadjilstfo shamfs by 3ilt


Constant Adjustments
\[
-0.002
\]
\[
\begin{aligned}
& 0.272 \\
& 0.25
\end{aligned}
\]
-0.02
TECHNICAL NOTES ON THE FORECASTS
prices adjust for 1974 U.S. data revisions.
Period

1975-2000
1975-2000
1975-2000
1975
1976
1977
1975
1976
Value
0.025
0.021
0.042
0.0376
-0.1062 0.25
0.15
0.0103
0.0103
-0.02
The following are the constant adjustments applied. Those for desired stock and shares were


Value
TECHNICAL NOTES ON THE FORECASTS \(1975-2000\)
\(1975-2000\)
\(1975-2000\)
\(1975-2000\)
\(1975-2000\)
\(1975-2000\)

\footnotetext{
simulation performance. 1975
\(1976-2000\) to series were
0.4694
0.48
0.9264
0.93

}
\begin{tabular}{c} 
Period \\
\hline 1975 \\
1975 \\
1976 \\
1977 \\
1978 \\
1975 \\
1976
\end{tabular}
< 61 0002-GL6L 1975-2000
Value
-0.0124
-0.01
0.05
0.03
0.015
-0.002
-0.03
-0.015
-1.83
-11.42
-14.53
-7.94
-100.0
-30.0 Variable
SHRS/SCTNR
SHRMDNR
SHRFDNR
USSDPUTRN
USMDPUTRN
USFDPUTRN
USSFPUTRN
USTDPUBASEFW
USTDPOPTMFW
ExOgenized Values
The following
SHRSDNR
SHRCDNR
TECHNICAL NOTES ON THE FORECASTS


\section*{त1 \\ }
U.S. DEPARTMENT OF TRANSPORTATION RESEARCH AND EPECIAL PROGAAMS ADMINISTRATION
TKAMSFORIATION SYSTIMS CENTEA
KENDALL GOUABE. CAMBADOE. MA. 02142
official ousinese
PENALTY GOR PRIVAIE UEE. 1300
noxaste```

